1
|
Yang A, Liao Y, Zhu J, Zhang J, Wu Z, Li X, Tong P, Chen H, Wang S, Liu Z. Screening of anti-allergy Lactobacillus and its effect on allergic reactions in BALB/c mice sensitized by soybean protein. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
2
|
Sánchez-Pavón E, López-Monteon A, Hernández-Romero D, de la Soledad Lagunes-Castro M, Zanatta-García DY, Ramos-Ligonio A. Design and Synthesis of IMR-23, an Oxime Derived from Nitroimidazole as an Immunomodulatory Molecule. Curr Drug Deliv 2021; 17:324-332. [PMID: 32056525 DOI: 10.2174/1567201817666200214110442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 09/26/2019] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Adjuvants have been obtained empirically by trial and error experiments and today, there is a tendency to the rational design of adjuvants candidates, which will increasingly achieve effective and safe products. The aim of this work was to design and evaluate the compound IMR-23 derived from nitroimidazole as an immunomodulatory molecule. MATERIALS AND METHODS The IMR-23 molecule was obtained by a condensation reaction, cytotoxicity was tested by the sulforhodamine B assay. Adjuvanticity was evaluated in vivo and in vitro in J774A.1 cells and in the mouse model, respectively. RESULTS IMR-23 that did not show cytotoxicity on HeLa, Vero cells and macrophages J774A.1, was able to induce the production of molecules involved in the inflammatory process, such as cytokines and chemokines determined by ELISA, to induce the production of antibodies and to generate antigenspecific cells to ovalbumin and against the antigen GST-L1b. CONCLUSION These results open the possibility of further studies to obtain a proper balance of immunogenicity- toxicity in the use of IMR-23 as an adjuvant molecule.
Collapse
Affiliation(s)
- Esmeralda Sánchez-Pavón
- LADISER Quimica Organica, Facultad de Ciencias Quimicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | - Aracely López-Monteon
- LADISER Inmunologia y Biologia Molecular, Facultad de Ciencias Quimicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.,Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| | - Delia Hernández-Romero
- LADISER Quimica Organica, Facultad de Ciencias Quimicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico
| | | | | | - Angel Ramos-Ligonio
- LADISER Inmunologia y Biologia Molecular, Facultad de Ciencias Quimicas, Universidad Veracruzana, Orizaba, Veracruz, Mexico.,Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, México
| |
Collapse
|
3
|
Zeng HT, Zhao M, Yang SB, Huang H, Geng XR, Liu JQ, Yang G, Li DC, Yang LT, Zheng PY, Yang PC. Vasoactive intestinal peptide alleviates food allergy via restoring regulatory B cell functions. Immunobiology 2019; 224:804-810. [PMID: 31471097 DOI: 10.1016/j.imbio.2019.08.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023]
Abstract
The immune regulatory cell dysfunction is associated with many immune diseases including food allergy (FA). This study aims to investigate the role of vasoactive intestinal peptide (VIP) in the maintenance of regulatory B cell (Br cell)'s immune suppressive functions by stabilizing thrombospondin (TSP1) expression. In this study, blood samples were collected from patients with food allergy (FA) and healthy control (HC) subjects. Br cells were isolated from the samples through flow cytometry cell sorting and analyzed by immunological approaches to determine the immune regulatory capacity. We found that the immune suppressive functions of Br cells were impaired in FA patients. The serum VIP levels were associated with the production of immune suppressive function-related mediators (interleukin-10, IL-10) of Br cells in FA patients. VIP counteracted IL-10 mRNA decay in Br cells by up regulating the TSP1 expression. TSP1 inhibited tristetraprolin (TTP) to prevent IL-10 mRNA decay in Br cells. Administration of VIP inhibited FA response through restoration of immune suppressive functions in Br cells. In conclusion, administration of VIP can alleviate FA response through up regulating expression of TSP1 to stabilize IL-10 expression in FA Br cells and recover the immune regulatory functions. The results have translational potential for the treatment of FA and other disorders associated with immune regulatory dysfunction of Br cells.
Collapse
Affiliation(s)
- Hao-Tao Zeng
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China
| | - Miao Zhao
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Shao-Bo Yang
- Department of Cadre Clinic, Chinese PLA General Hospital, Beijing, China
| | - Huang Huang
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiao-Rui Geng
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Jiang-Qi Liu
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Gui Yang
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Dong-Cai Li
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China
| | - Li-Tao Yang
- Affiliated ENT Hospital of Shenzhen University School of Medicine and Longgang ENT Hospital & Shenzhen ENT Institute, Shenzhen, China; Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China; Brain-Body Institute, McMaster University, Hamilton, ON, Canada
| | - Peng-Yuan Zheng
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Ping-Chang Yang
- Research Center of Allergy & Immunology, Shenzhen University School of Medicine. Shenzhen, China.
| |
Collapse
|
5
|
Huang J, Liu C, Wang Y, Wang C, Xie M, Qian Y, Fu L. Application of in vitro and in vivo models in the study of food allergy. FOOD SCIENCE AND HUMAN WELLNESS 2018. [DOI: 10.1016/j.fshw.2018.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|