1
|
Mastantuono S, Manini I, Di Loreto C, Beltrami AP, Vindigni M, Cesselli D. Glioma-Derived Exosomes and Their Application as Drug Nanoparticles. Int J Mol Sci 2024; 25:12524. [PMID: 39684236 DOI: 10.3390/ijms252312524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma Multiforme (GBM) is the most aggressive primary tumor of the Central Nervous System (CNS) with a low survival rate. The malignancy of GBM is sustained by a bidirectional crosstalk between tumor cells and the Tumor Microenvironment (TME). This mechanism of intercellular communication is mediated, at least in part, by the release of exosomes. Glioma-Derived Exosomes (GDEs) work, indeed, as potent signaling particles promoting the progression of brain tumors by inducing tumor proliferation, invasion, migration, angiogenesis and resistance to chemotherapy or radiation. Given their nanoscale size, exosomes can cross the blood-brain barrier (BBB), thus becoming not only a promising biomarker to predict diagnosis and prognosis but also a therapeutic target to treat GBM. In this review, we describe the structural and functional characteristics of exosomes and their involvement in GBM development, diagnosis, prognosis and treatment. In addition, we discuss how exosomes can be modified to be used as a therapeutic target/drug delivery system for clinical applications.
Collapse
Affiliation(s)
- Serena Mastantuono
- Department of Medicine, University of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Ivana Manini
- Department of Pathological Anatomy, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Carla Di Loreto
- Department of Pathological Anatomy, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
- Institute of Clinical Pathology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Marco Vindigni
- Department of Neurosurgery, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Daniela Cesselli
- Department of Medicine, University of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
- Department of Pathological Anatomy, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
2
|
Fekrirad Z, Gharedaghi M, Saadatpour F, Molabashi ZA, Rezayof A, Korourian A, Soleimani M, Arefian E. Combination of microRNA and suicide gene for targeting Glioblastoma: Inducing apoptosis and significantly suppressing tumor growth in vivo. Heliyon 2024; 10:e37041. [PMID: 39286083 PMCID: PMC11403485 DOI: 10.1016/j.heliyon.2024.e37041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma (GBM), a grade IV brain tumor, presents a severe challenge in treatment and eradication due to its high genetic variability and the existence of stem-like cells with self-renewal potential. Conventional therapies fall short of preventing recurrence and fail to extend the median survival of patients significantly. However, the emergence of gene therapy, which has recently obtained significant clinical outcomes, brings hope. It has the potential to be a suitable strategy for the treatment of GBM. Notably, microRNAs (miRNAs) have been noticed as critical players in the development and progress of GBM. The combined usage of hsa-miR-34a and Cytosine Deaminase (CD) suicide gene and 5-fluorocytosine (5FC) prodrug caused cytotoxicity against U87MG Glioma cells in vitro. The apoptosis and cell cycle arrest rates were measured by flow cytometry. The lentiviral vector generated overexpression of CD/miR-34a in the presence of 5FC significantly promoted apoptosis and caused cell cycle arrest in U87MG cells. The expression level of the BCL2, SOX2, and P53 genes, target genes of hsa-miR-34a, was examined by quantitative real-time PCR. The treatment led to a substantial downregulation of Bcl2 and SOX2 genes while elevating the expression levels of Caspase7 and P53 genes compared to the scrambled control. The hsa-miR-34a hindered the proliferation of GBM cancer cells and elevated apoptosis through the P53-miR-34a-Bcl2 axis. The CD suicide gene with 5FC treatment demonstrated similar results to miR-34a in the apoptosis, cell cycle, and real-time assays. The combination of CD and miR-34a produced a synergistic effect. In vivo, anti-GBM efficacy evaluation in rats bearing intracranial C6 Glioma cells revealed a remarkable induction of apoptosis and a significant inhibition of tumor growth compared with the scrambled control. The simultaneous use of CD/miR-34a with 5FC almost entirely suppressed tumor growth in rat models. The combined application of hsa-miR-34a and CD suicide gene against GBM tumors led to significant induction of apoptosis in U87MG cells and a considerable reduction in tumor growth in vivo.
Collapse
Affiliation(s)
- Zahra Fekrirad
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Milad Gharedaghi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Fatemeh Saadatpour
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Zahra Asghari Molabashi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Ameneh Rezayof
- Neuroscience Lab, Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Alireza Korourian
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Soleimani
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Arefian
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Stem Cells Technology and Tissue Regeneration, School of Biology, College of Science, University of Tehran, Tehran, Iran
| |
Collapse
|
3
|
Fattahi M, Maghsudlu M, Razipour M, Movahedpour A, Ghadami M, Alizadeh M, Khatami SH, Taheri-Anganeh M, Ghasemi E, Ghasemi H, Aiiashi S, Ghadami E. MicroRNA biosensors for detection of glioblastoma. Clin Chim Acta 2024; 556:117829. [PMID: 38355000 DOI: 10.1016/j.cca.2024.117829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/10/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
Glioblastoma (GBM) is the most common type of malignant brain tumor.The discovery of microRNAs and their unique properties have made them suitable tools as biomarkers for cancer diagnosis, prognosis, and evaluation of therapeutic response using different types of nanomaterials as sensitive and specific biosensors. In this review, we discuss microRNA-based electrochemical biosensing systems and the use of nanoparticles in the evolving development of microRNA-based biosensors in glioblastoma.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam; School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Mohadese Maghsudlu
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Razipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Alizadeh
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mortaza Taheri-Anganeh
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | | | | | - Saleh Aiiashi
- Abadan University of Medical Sciences, Abadan, Iran.
| | - Elham Ghadami
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Abdoli Shadbad M, Baghbanzadeh A, Baradaran B. hsa-miR-34a-5p enhances temozolomide anti-tumoral effects on glioblastoma: in-silico and in-vitro study. EXCLI JOURNAL 2024; 23:384-400. [PMID: 38655096 PMCID: PMC11036064 DOI: 10.17179/excli2023-6404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024]
Abstract
Glioblastoma multiform (GBM) is a commonly diagnosed brain neoplasm with a poor prognosis. Accumulating evidence has highlighted the significance of microRNA (miR) dysregulation in tumor development and progression. This study investigated the effect of hsa-miR-34a-5p and its combination with temozolomide on GBM, the related molecular mechanisms, and the signaling pathway using in-silico and in-vitro approaches. The in-silico tumor bulk and single-cell RNA sequencing analyses were done on TCGA-GTEx, CGGA, GSE13276, GSE90603, and GSE182109 datasets. After selecting the A172 cell line, hsa-miR-34a-5p mimics were transfected, and the cell viability, migration, cell cycle, clonogenicity, and apoptosis of studied groups were studied using MTT, scratch, flow cytometry, colony formation, and Annexin V/PI assays. The mRNA expression of CASP9, CASP3, CASP8, MMP2, CD44, CDK6, CDK4, CCND1, RAF1, MAP2K1, MET, SRC, and CD274 was studied using qRT-PCR method. hsa-miR-34a-5p downregulated RAF1 expression, as the signaling factor of the MAPK pathway. The combined treatment significantly downregulated the expression of MET, SRC, and MAP2K1, leading to the inhibition of the MET/MAPK pathway compared to temozolomide. Besides exerting anti-tumoral effects on the cell viability, migration, cell cycle, apoptosis, and clonogenicity of A172 cells, its combination with temozolomide enhanced temozolomide anti-tumoral effect. Compared to temozolomide, the combined treatment significantly decreased CDK4, CDK6, CCND1, and MMP2 expression. hsa-miR-34a-5p targets RAF1, as the signaling factor of the MAPK pathway, and potentiates the temozolomide anti-tumoral effect on A172 cells.
Collapse
Affiliation(s)
- Mahdi Abdoli Shadbad
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Singh RR, Mondal I, Janjua T, Popat A, Kulshreshtha R. Engineered smart materials for RNA based molecular therapy to treat Glioblastoma. Bioact Mater 2024; 33:396-423. [PMID: 38059120 PMCID: PMC10696434 DOI: 10.1016/j.bioactmat.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/19/2023] [Accepted: 11/14/2023] [Indexed: 12/08/2023] Open
Abstract
Glioblastoma (GBM) is an aggressive malignancy of the central nervous system (CNS) that remains incurable despite the multitude of improvements in cancer therapeutics. The conventional chemo and radiotherapy post-surgery have only been able to improve the prognosis slightly; however, the development of resistance and/or tumor recurrence is almost inevitable. There is a pressing need for adjuvant molecular therapies that can successfully and efficiently block tumor progression. During the last few decades, non-coding RNAs (ncRNAs) have emerged as key players in regulating various hallmarks of cancer including that of GBM. The levels of many ncRNAs are dysregulated in cancer, and ectopic modulation of their levels by delivering antagonists or overexpression constructs could serve as an attractive option for cancer therapy. The therapeutic potential of several types of ncRNAs, including miRNAs, lncRNAs, and circRNAs, has been validated in both in vitro and in vivo models of GBM. However, the delivery of these RNA-based therapeutics is highly challenging, especially to the tumors of the brain as the blood-brain barrier (BBB) poses as a major obstacle, among others. Also, since RNA is extremely fragile in nature, careful considerations must be met while designing a delivery agent. In this review we have shed light on how ncRNA therapy can overcome the limitations of its predecessor conventional therapy with an emphasis on smart nanomaterials that can aide in the safe and targeted delivery of nucleic acids to treat GBM. Additionally, critical gaps that currently exist for successful transition from viral to non-viral vector delivery systems have been identified. Finally, we have provided a perspective on the future directions, potential pathways, and target areas for achieving rapid clinical translation of, RNA-based macromolecular therapy to advance the effective treatment of GBM and other related diseases.
Collapse
Affiliation(s)
- Ravi Raj Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- University of Queensland –IIT Delhi Academy of Research (UQIDAR)
| | - Indranil Mondal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Taskeen Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Functional Materials and Catalysis, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria
| | - Ritu Kulshreshtha
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
6
|
Obrador E, Moreno-Murciano P, Oriol-Caballo M, López-Blanch R, Pineda B, Gutiérrez-Arroyo JL, Loras A, Gonzalez-Bonet LG, Martinez-Cadenas C, Estrela JM, Marqués-Torrejón MÁ. Glioblastoma Therapy: Past, Present and Future. Int J Mol Sci 2024; 25:2529. [PMID: 38473776 PMCID: PMC10931797 DOI: 10.3390/ijms25052529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/10/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Glioblastoma (GB) stands out as the most prevalent and lethal form of brain cancer. Although great efforts have been made by clinicians and researchers, no significant improvement in survival has been achieved since the Stupp protocol became the standard of care (SOC) in 2005. Despite multimodality treatments, recurrence is almost universal with survival rates under 2 years after diagnosis. Here, we discuss the recent progress in our understanding of GB pathophysiology, in particular, the importance of glioma stem cells (GSCs), the tumor microenvironment conditions, and epigenetic mechanisms involved in GB growth, aggressiveness and recurrence. The discussion on therapeutic strategies first covers the SOC treatment and targeted therapies that have been shown to interfere with different signaling pathways (pRB/CDK4/RB1/P16ink4, TP53/MDM2/P14arf, PI3k/Akt-PTEN, RAS/RAF/MEK, PARP) involved in GB tumorigenesis, pathophysiology, and treatment resistance acquisition. Below, we analyze several immunotherapeutic approaches (i.e., checkpoint inhibitors, vaccines, CAR-modified NK or T cells, oncolytic virotherapy) that have been used in an attempt to enhance the immune response against GB, and thereby avoid recidivism or increase survival of GB patients. Finally, we present treatment attempts made using nanotherapies (nanometric structures having active anti-GB agents such as antibodies, chemotherapeutic/anti-angiogenic drugs or sensitizers, radionuclides, and molecules that target GB cellular receptors or open the blood-brain barrier) and non-ionizing energies (laser interstitial thermal therapy, high/low intensity focused ultrasounds, photodynamic/sonodynamic therapies and electroporation). The aim of this review is to discuss the advances and limitations of the current therapies and to present novel approaches that are under development or following clinical trials.
Collapse
Affiliation(s)
- Elena Obrador
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Paz Moreno-Murciano
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
| | - María Oriol-Caballo
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Rafael López-Blanch
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Begoña Pineda
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
| | - Julia Lara Gutiérrez-Arroyo
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Alba Loras
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - Luis G. Gonzalez-Bonet
- Department of Neurosurgery, Castellon General University Hospital, 12004 Castellon, Spain;
| | - Conrado Martinez-Cadenas
- Department of Medicine, Jaume I University of Castellon, 12071 Castellon, Spain; (J.L.G.-A.); (A.L.); (C.M.-C.)
| | - José M. Estrela
- Scientia BioTech S.L., 46002 Valencia, Spain; (P.M.-M.); (M.O.-C.); (R.L.-B.); (J.M.E.)
- Department of Physiology, Faculty of Medicine and Odontology, University of Valencia, 46010 Valencia, Spain;
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Spain
| | | |
Collapse
|
7
|
Lei Q, Yang Y, Zhou W, Liu W, Li Y, Qi N, Li Q, Wen Z, Ding L, Huang X, Li Y, Wu J. MicroRNA-based therapy for glioblastoma: Opportunities and challenges. Eur J Pharmacol 2022; 938:175388. [PMID: 36403686 DOI: 10.1016/j.ejphar.2022.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common and aggressive primary malignant brain tumor and is characterized by high mortality and morbidity rates and unpredictable clinical behavior. The disappointing prognosis for patients with GBM even after surgery and postoperative radiation and chemotherapy has fueled the search for specific targets to provide new insights into the development of modern therapies. MicroRNAs (miRNAs/miRs) act as oncomirs and tumor suppressors to posttranscriptionally regulate the expression of various genes and silence many target genes involved in cell proliferation, the cell cycle, apoptosis, invasion, stem cell behavior, angiogenesis, the microenvironment and chemo- and radiotherapy resistance, which makes them attractive candidates as prognostic biomarkers and therapeutic targets or agents to advance GBM therapeutics. However, one of the major challenges of successful miRNA-based therapy is the need for an effective and safe system to deliver therapeutic compounds to specific tumor cells or tissues in vivo, particularly systems that can cross the blood-brain barrier (BBB). This challenge has shifted gradually as progress has been achieved in identifying novel tumor-related miRNAs and their targets, as well as the development of nanoparticles (NPs) as new carriers to deliver therapeutic compounds. Here, we provide an up-to-date summary (in recent 5 years) of the current knowledge of GBM-related oncomirs, tumor suppressors and microenvironmental miRNAs, with a focus on their potential applications as prognostic biomarkers and therapeutic targets, as well as recent advances in the development of carriers for nontoxic miRNA-based therapy delivery systems and how they can be adapted for therapy.
Collapse
Affiliation(s)
- Qingchun Lei
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Yongmin Yang
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenhui Zhou
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Wenwen Liu
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China; School of Medicine, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Yixin Li
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Nanchang Qi
- Clinical Laboratory, The First People's Hospital of Kunming, Kunming, 650021, Yunnan, PR China
| | - Qiangfeng Li
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Zhonghui Wen
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China
| | - Lei Ding
- School of Life Sciences, Yunnan University, Kunming, 650091, Yunnan, PR China
| | - Xiaobin Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650000, Yunnan, PR China
| | - Yu Li
- Yunnan Provincial Key Lab of Agricultural Biotechnology, Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, 650223, PR China.
| | - Jin Wu
- Department of Neurosurgery, Pu'er People's Hospital, Pu'er, 665000, Yunnan, PR China.
| |
Collapse
|
8
|
Differential Regulation of the EGFR/PI3K/AKT/PTEN Pathway between Low- and High-Grade Gliomas. Brain Sci 2021; 11:brainsci11121655. [PMID: 34942957 PMCID: PMC8699139 DOI: 10.3390/brainsci11121655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 01/07/2023] Open
Abstract
Gliomas represent 70% of all central system nervous tumors and are classified according to the degree of malignancy as low- or high-grade. The permanent activation of the EGFR/PI3K/AKT pathway by various genetic or post-translational alterations of EGFR, PI3KCA, and PTEN has been associated with increased proliferation and resistance to apoptosis. The present study aimed to analyze the molecular/genetic changes in the EGFR/PI3K/AKT/PTEN pathway between low-grade and high-grade gliomas in a sample of Colombian patients. A total of 30 samples were tested for PI3K and PTEN mutations, EGFR, PI3K, and AKT gene amplification, AKT, PI3K, BAX, Bcl2 expression levels, and phosphorylation of AKT and PTEN, EGFR and/or PI3K gene amplification was found in 50% of low-grade and 45% of high-grade ones. AKT amplification was found in 25% of the low-grade and 13.6% of the high-grade. The expression of PI3K, AKT, Bcl2, and BAX was increased particularly to a high degree. AKT phosphorylation was found in 66% of low-grade and 31.8% of high-grade. Increased phosphorylation of PTEN was found in 77% low-grade and 66% high-grade. Our results indicate that alterations in the EGFR/PI3K/AKT/PTEN pathway could be important in the initiation and malignant progression of this type of tumor.
Collapse
|
9
|
Lambrou GI, Poulou M, Giannikou K, Themistocleous M, Zaravinos A, Braoudaki M. Differential and Common Signatures of miRNA Expression and Methylation in Childhood Central Nervous System Malignancies: An Experimental and Computational Approach. Cancers (Basel) 2021; 13:cancers13215491. [PMID: 34771655 PMCID: PMC8583574 DOI: 10.3390/cancers13215491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Epigenetic modifications are considered of utmost significance for tumor ontogenesis and progression. Especially, it has been found that miRNA expression, as well as DNA methylation plays a significant role in central nervous system tumors during childhood. A total of 49 resected brain tumors from children were used for further analysis. DNA methylation was identified with methylation-specific MLPA and, in particular, for the tumor suppressor genes CASP8, RASSF1, MGMT, MSH6, GATA5, ATM1, TP53, and CADM1. miRNAs were identified with microarray screening, as well as selected samples, were tested for their mRNA expression levels. CASP8, RASSF1 were the most frequently methylated genes in all tumor samples. Simultaneous methylation of genes manifested significant results with respect to tumor staging, tumor type, and the differentiation of tumor and control samples. There was no significant dependence observed with the methylation of one gene promoter, rather with the simultaneous presence of all detected methylated genes' promoters. miRNA expression was found to be correlated to gene methylation. Epigenetic regulation appears to be of major importance in tumor progression and pathophysiology, making it an imperative field of study.
Collapse
Affiliation(s)
- George I. Lambrou
- Choremeio Research Laboratory, First Department of Pediatrics, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Myrto Poulou
- Department of Medical Genetics, Medical School, National and Kapodistrian University of Athens, 15772 Athens, Greece;
| | - Krinio Giannikou
- Cancer Genetics Laboratory, Division of Pulmonary and Critical Care Medicine and of Genetics, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
| | - Marios Themistocleous
- Department of Neurosurgery, “Aghia Sofia” Children’s Hospital, 11527 Athens, Greece;
| | - Apostolos Zaravinos
- Department of Life Sciences, School of Sciences, European University Cyprus, Nicosia 2404, Cyprus
- Basic and Translational Cancer Research Center (BTCRC), Cancer Genetics, Genomics and Systems Biology Group, European University Cyprus, Nicosia 1516, Cyprus
- Correspondence: (A.Z.); (M.B.)
| | - Maria Braoudaki
- Department of Life and Environmental Sciences, School of Life and Health Sciences, University of Hertfordshire, Hertfordshire AL10 9AB, UK
- Correspondence: (A.Z.); (M.B.)
| |
Collapse
|
10
|
Chen M, Medarova Z, Moore A. Role of microRNAs in glioblastoma. Oncotarget 2021; 12:1707-1723. [PMID: 34434499 PMCID: PMC8378762 DOI: 10.18632/oncotarget.28039] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most common and aggressive primary human brain cancer. MicroRNAs (miRNAs) are a set of small endogenous non-coding RNA molecules which play critical roles in different biological processes including cancer. The realization of miRNA regulatory functions in GBM has demonstrated that these molecules play a critical role in its initiation, progression and response to therapy. In this review we discuss the studies related to miRNA discovery and function in glioblastoma. We first summarize the typical miRNAs and their roles in GBM. Then we debate the potential for miRNA-based therapy for glioblastoma, including various delivery strategies. We surmise that future directions identified by these studies will point towards the necessity for therapeutic development and optimization to improve the outcomes for patients with glioblastoma.
Collapse
Affiliation(s)
- Ming Chen
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Zdravka Medarova
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, East Lansing, MI 48824, USA.,Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
11
|
Li S, Wei X, He J, Cao Q, Du D, Zhan X, Zeng Y, Yuan S, Sun L. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev 2021; 40:925-948. [PMID: 33959850 DOI: 10.1007/s10555-021-09973-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
MicroRNA-34 (miR-34) plays central roles in human diseases, especially cancers. Inactivation of miR-34 is detected in cancer cell lines and tumor tissues versus normal controls, implying its potential tumor-suppressive effect. Clinically, miR-34 has been identified as promising prognostic indicators for various cancers. In fact, members of the miR-34 family, especially miR-34a, have been convincingly proved to affect almost the whole cancer progression process. Here, a total of 512 (miR-34a, 10/21), 85 (miR-34b, 10/16), and 114 (miR-34c, 10/14) putative targets of miR-34a/b/c are predicted by at least ten miRNA databases, respectively. These targets are further analyzed in gene ontology (GO), KEGG pathway, and the Reactome pathway dataset. The results suggest their involvement in the regulation of signal transduction, macromolecule metabolism, and protein modification. Also, the targets are implicated in critical signaling pathways, such as MAPK, Notch, Wnt, PI3K/AKT, p53, and Ras, as well as apoptosis, cell cycle, and EMT-related pathways. Moreover, the upstream regulators of miR-34a, mainly including transcription factors (TFs), lncRNAs, and DNA methylation, will be summarized. Meanwhile, the potential TF upstream of miR-34a/b/c will be predicted by PROMO, JASPAR, Animal TFDB 3.0, and GeneCard databases. Notably, miR-34a is an attractive target for certain cancers. In fact, miR-34a-based systemic delivery combined with chemotherapy or radiotherapy can more effectively control tumor progression. Collectively, this review will provide a panorama for miR-34a in cancer research.
Collapse
Affiliation(s)
- Sijing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinyong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
- China Cell-Gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanquan Cao
- MARBEC, Université Montpellier, UM-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Danyu Du
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoman Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Caponnetto F, Dalla E, Mangoni D, Piazza S, Radovic S, Ius T, Skrap M, Di Loreto C, Beltrami AP, Manini I, Cesselli D. The miRNA Content of Exosomes Released from the Glioma Microenvironment Can Affect Malignant Progression. Biomedicines 2020; 8:biomedicines8120564. [PMID: 33287106 PMCID: PMC7761654 DOI: 10.3390/biomedicines8120564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/27/2020] [Accepted: 12/01/2020] [Indexed: 12/13/2022] Open
Abstract
Low-grade gliomas (LGG) are infiltrative primary brain tumors that in 70% of the cases undergo anaplastic transformation, deeply affecting prognosis. However, the timing of progression is heterogeneous. Recently, the tumor microenvironment (TME) has gained much attention either as prognostic factor or therapeutic target. Through the release of extracellular vesicles, the TME contributes to tumor progression by transferring bioactive molecules such as microRNA. The aim of the study was to take advantage of glioma-associated stem cells (GASC), an in vitro model of the glioma microenvironment endowed with a prognostic significance, and their released exosomes, to investigate the possible role of exosome miRNAs in favoring the anaplastic transformation of LGG. Therefore, by deep sequencing, we analyzed and compared the miRNA profile of GASC and exosomes obtained from LGG patients characterized by different prognosis. Results showed that exosomes presented a different signature, when compared to their cellular counterpart and that, although sharing several miRNAs, exosomes of patients with a bad prognosis, selectively expressed some miRNAs possibly responsible for the more aggressive phenotype. These findings get insights into the value of TME and exosomes as potential biomarkers for precision medicine approaches aimed at improving LGG prognostic stratification and therapeutic strategies.
Collapse
Affiliation(s)
- Federica Caponnetto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Emiliano Dalla
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Damiano Mangoni
- Central RNA Laboratory, Istituto Italiano di Tecnologia (IIT), 16163 Genova, Italy;
| | - Silvano Piazza
- International Center for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy;
| | | | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, University Hospital of Udine, 33100 Udine, Italy; (T.I.); (M.S.)
| | - Carla Di Loreto
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| | - Antonio Paolo Beltrami
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
| | - Ivana Manini
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
- Correspondence: (F.C.); (I.M.); Tel.: +39-0432-559-412 (F.C. & I.M.)
| | - Daniela Cesselli
- Department of Medicine, University of Udine, 33100 Udine, Italy; (E.D.); (C.D.L.); (A.P.B.); (D.C.)
- Institute of Pathology, University Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
13
|
Chen L, Wang G, Xu Z, Lin K, Mu S, Pan Y, Shan M. Overexpression of LncRNA PSMG3-AS1 Distinguishes Glioblastomas from Sarcoidosis. J Mol Neurosci 2020; 70:2015-2019. [PMID: 32529538 DOI: 10.1007/s12031-020-01605-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/19/2020] [Indexed: 11/24/2022]
Abstract
In clinical practices, glioblastomas (GBM) in some cases can be misdiagnosed as sarcoidosis. This study aimed to develop a biomarker to distinguish GBM from sarcoidosis. In this study, we found that PSMG3-AS1 was upregulated in plasma of GBM patients in comparison with that in sarcoidosis patients and healthy controls. Receiver operating characteristic (ROC) curve analysis showed that upregulation of PSMG3-AS1 effectively separated GBM patients from sarcoidosis patients and healthy controls. In GBM cells, overexpression of PSMG3-AS1 led to downregulated miR-34a and increased methylation of miR-34a gene. In addition, overexpression of PSMG3-AS1 reduced the inhibitory effects of miR-34a on GBM cell proliferation. In conclusion, overexpression of PSMG3-AS1 distinguishes GBM patients from patients with sarcoidosis, and PSMG3-AS1 may promote GBM cell proliferation by downregulating miR-34a through methylation.
Collapse
Affiliation(s)
- Liusheng Chen
- 75th Army Military Medical Research Center, Dali, Yunnan Province, 671003, People's Republic of China
| | - Guanliang Wang
- Department of Traditional Chinese Medical Rehabilitation, 75th Army Military Hospital, Dali, Yunnan Province, 671003, People's Republic of China.
| | - Zihui Xu
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Army Military Medical University, Chongqing City, 400037, People's Republic of China
| | - Kailong Lin
- Department of Traditional Chinese Medical Rehabilitation, 75th Army Military Hospital, Dali, Yunnan Province, 671003, People's Republic of China
| | - Sen Mu
- 75th Army Military Medical Research Center, Dali, Yunnan Province, 671003, People's Republic of China
| | - Yicheng Pan
- Department of Traditional Chinese Medical Rehabilitation, 75th Army Military Hospital, Dali, Yunnan Province, 671003, People's Republic of China
| | - Mengya Shan
- Department of Traditional Chinese Medicine, Second Affiliated Hospital of Army Military Medical University, Chongqing City, 400037, People's Republic of China
| |
Collapse
|
14
|
Janaki Ramaiah M, Divyapriya K, Kartik Kumar S, Rajesh YBRD. Drug-induced modifications and modulations of microRNAs and long non-coding RNAs for future therapy against Glioblastoma Multiforme. Gene 2019; 723:144126. [PMID: 31589963 DOI: 10.1016/j.gene.2019.144126] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 02/07/2023]
Abstract
Non-coding RNAs are known to participate in cancer initiation, progression, and metastasis by regulating the status of chromatin epigenetics and gene expression. Although these non-coding RNAs do not possess defined protein-coding potential, they are involved in the expression and stability of messenger RNA (mRNA). The length of microRNAs (miRs) ranges between 20 and 22 nt, whereas, long non-coding RNAs (lncRNAs) length ranges between 200 nt to 1 Kb. In the case of circular RNAs (circRNAs), the size varies depending upon the length of the exon from where they were derived. Epigenetic regulations of miR and lncRNA genes will influence the gene expression by modulating histone acetylation and methylation patterns. Especially, lncRNAs will act as a scaffold for various epigenetic proteins, such as EZH2 and LSD1, and influence the chromatin epigenetic state at various genomic loci involved at silencing. Thus investigations on the expression of lncRNAs and designing drugs to modulate the expression of these genes will have a profound impact on future therapeutics against cancers such as Glioblastoma Multiforme (GBM) and also against various other diseases. With the recent advancements in genome-wide transcriptomic studies, scientists are focused on the non-coding RNAs and their regulations on various cellular processes involved in GBM and on other types of cancer as well as trying to understand possible epigenetic modulations that help in generating promising therapeutics for the future generations. In this review, the involvement of epigenetic proteins, enzymes that change chromatin architecture and epigenetic landscape and new roles of lncRNAs that are involved in GBM progression are elaborately discussed.
Collapse
Affiliation(s)
- M Janaki Ramaiah
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India.
| | - Karthikeyan Divyapriya
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Sarwareddy Kartik Kumar
- Laboratory of Functional Genomics and Disease Biology, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| | - Y B R D Rajesh
- Organic Synthesis and Catalysis Laboratory, School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur 613401, Tamil Nadu, India
| |
Collapse
|
15
|
Congur G, Erdem A. PAMAM dendrimer modified screen printed electrodes for impedimetric detection of miRNA-34a. Microchem J 2019. [DOI: 10.1016/j.microc.2019.05.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Shou T, Yang H, Lv J, Liu D, Sun X. MicroRNA‑3666 suppresses the growth and migration of glioblastoma cells by targeting KDM2A. Mol Med Rep 2018; 19:1049-1055. [PMID: 30483744 PMCID: PMC6323202 DOI: 10.3892/mmr.2018.9698] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 07/27/2018] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are acknowledged as essential regulators in human cancer types, including glioblastoma (GBM). However, the functions of microRNA-3666 (miR-3666) in GBM remain unclear. In the present study, it was identified that the expression of miR-3666 was significantly downregulated in GBM tissues compared with adjacent normal tissues by reverse transcription-quantitative polymerase chain reaction. Additionally, miR-3666 was downregulated in GBM cell lines. Furthermore, it was observed that the miR-3666 expression level in patients with GBM was associated with prognosis. With functional experiments, it was identified that overexpression of miR-3666 significantly inhibited the proliferation, migration and invasion of GBM cells in vitro by Cell Counting kit-8 and Transwell assays. Ectopic expression of miR-3666 significantly arrested GBM cells in the G0 phase by fluorescence activated cell sorting. In terms of the underlying mechanism, it was identified that lysine-specific demethylase 2A (KDM2A) is a direct target of miR-3666 in GBM cells. Overexpression of miR-3666 significantly decreased the expression of KDM2A in GBM cells. Furthermore, it was observed that knockdown of KDM2A significantly suppressed the proliferation, migration and invasion of GBM cells. Collectively, the present results demonstrated that the miR-3666/KDM2A axis serves an important role in the progression of GBM, which provides novel insight into the development of therapeutic strategies for GBM treatment.
Collapse
Affiliation(s)
- Taotao Shou
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Huyin Yang
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Jia Lv
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Dai Liu
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| | - Xiaoyang Sun
- Department of Neurosurgery, The Affiliated Huai'an No. 1 Hospital of Nanjing Medical University, Huai'an, Jiangsu 223300, P.R. China
| |
Collapse
|
17
|
Kashyap D, Tuli HS, Garg VK, Goel N, Bishayee A. Oncogenic and Tumor-Suppressive Roles of MicroRNAs with Special Reference to Apoptosis: Molecular Mechanisms and Therapeutic Potential. Mol Diagn Ther 2018; 22:179-201. [PMID: 29388067 DOI: 10.1007/s40291-018-0316-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) are the non-coding class of minute RNA molecules that negatively control post-transcriptional regulation of various functional genes. These miRNAs are transcribed from the loci present in the introns of functional or protein-coding genes, exons of non-coding genes, or even in the 3'-untranslated region (3'-UTR). They have potential to modulate the stability or translational efficiency of a variety of target RNA [messenger RNA (mRNA)]. The regulatory function of miRNAs has been elucidated in several pathological conditions, including neurological (Alzheimer's disease and Parkinson's disease) and cardiovascular conditions, along with cancer. Importantly, miRNA identification in cancer progression and invasion has evolved as an incipient era in cancer treatment. Several studies have shown the influence of miRNAs on various cancer processes, including apoptosis, invasion, metastasis and angiogenesis. In particular, apoptosis induction in tumor cells through miRNA has been extensively studied. The biphasic mode (up- and down-regulation) of miRNA expression in apoptosis and other cancer processes has already been determined. The findings of these studies could be utilized to develop potential therapeutic strategies for the management of various cancers. The present review critically describes the oncogenic and tumor suppressor role of miRNAs in apoptosis and other cancer processes, therapy resistance, and use of their presence in the body fluids as biomarkers.
Collapse
Affiliation(s)
- Dharambir Kashyap
- Department of Histopathology, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, Punjab, India
| | - Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar University, Mullana-Ambala, 133207, Haryana, India.
| | - Vivek Kumar Garg
- Department of Biochemistry, Government Medical College and Hospital, Chandigarh, 160030, Punjab, India
| | - Neelam Goel
- Department of Information Technology, University Institute of Engineering and Technology, Panjab University, Chandigarh, 160014, Punjab, India
| | - Anupam Bishayee
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, 33169, USA.
| |
Collapse
|
18
|
Wang W, Hu S, Chang J, Ruan H, Zhi W, Wang X, Shi Q, Wang Y, Yang Y. Down-Regulated microRNA-34a Expression as a Prognostic Marker for Poor Osteosarcoma in Mice: A Systematic Review and Meta-Analysis. J Cancer 2018; 9:4179-4186. [PMID: 30519318 PMCID: PMC6277615 DOI: 10.7150/jca.27483] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 07/21/2018] [Indexed: 12/13/2022] Open
Abstract
Background: In children and adolescents, osteosarcomais the most common malignant bone tumor with a high mortality rate. New therapeutic strategies are urgent to be explored. Studies have proven that microRNAs (miRNAs) in malignant tumors often appear dysregulation, this provides a direction for exploring the new therapeutic strategies for cancers. The aim of this meta-analysis is to summarize and analyze whethermicroRNA-34a(miRNA-34a) could be a prognostic marker for osteosarcoma in mice. Methods: We searched PubMed, Web of Science, Embase, Wan Fang Database, China Knowledge Resource Integrated Database, VIP Database, and SinoMed since their initiation date to January 24, 2018. After screening based on inclusion and exclusion criteria, eight articles were included for the final analysis. Results: Our results showed that tumor volume and tumor weight were inhibited by restoring the down-regulated expression of miRNA-34a in the xenograft mouse models. Conclusions: Down-regulated miRNA-34a expression is a prognostic marker for poor osteosarcoma. We should be more committed to investigate the clinical significance of miRNA-34a in osteosarcoma patients.
Collapse
Affiliation(s)
- Wenyi Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Shaopu Hu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Junli Chang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Hongfeng Ruan
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Wenlan Zhi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Xiaobo Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Qi Shi
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Yongjun Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| | - Yanping Yang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032China.,Key laboratory of theory and therapy of muscles and bones, Ministry of Education, Shanghai200032, China
| |
Collapse
|
19
|
Aberrant miRNAs Regulate the Biological Hallmarks of Glioblastoma. Neuromolecular Med 2018; 20:452-474. [PMID: 30182330 DOI: 10.1007/s12017-018-8507-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 08/17/2018] [Indexed: 12/14/2022]
Abstract
GBM is the highest incidence in primary intracranial malignancy, and it remains poor prognosis even though the patient is gave standard treatment. Despite decades of intense research, the complex biology of GBM remains elusive. In view of eight hallmarks of cancer which were proposed in 2011, studies related to the eight biological capabilities in GBM have made great progress. From these studies, it can be inferred that miRs, as a mode of post-transcriptional regulation, are involved in regulating these malignant biological hallmarks of GBM. Herein, we discuss state-of-the-art research on how aberrant miRs modulate the eight hallmarks of GBM. The upregulation of 'oncomiRs' or the genetic loss of tumor suppressor miRs is associated with these eight biological capabilities acquired during GBM formation. Furthermore, we also discuss the applicable clinical potential of these research results. MiRs may aid in the diagnosis and prognosis of GBM. Moreover, miRs are also therapeutic targets of GBM. These studies will develop and improve precision medicine for GBM in the future.
Collapse
|
20
|
Ding L, Wang L, Guo F. microRNA‑188 acts as a tumour suppressor in glioma by directly targeting the IGF2BP2 gene. Mol Med Rep 2017; 16:7124-7130. [PMID: 28901413 DOI: 10.3892/mmr.2017.7433] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 06/09/2017] [Indexed: 11/06/2022] Open
Abstract
Glioma is the most common and aggressive human brain tumour and accounts for ~35‑61% of intracranial tumours. Despite considerable advances in treatments for glioma, the prognosis for patients with this disease remains unsatisfactory. MicroRNAs (miRNAs of miRs) are small regulatory RNA molecules that have been identified as being involved in the initiation and progression of human cancers, and represent novel therapeutic targets for anticancer treatments. The dysregulation of miR‑188 has been reported in various kinds of human cancer. However, its expression pattern, biological roles and potential mechanism in glioma remain unknown. Expression levels of miR‑188 in glioma tissues and cell lines were detected through reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Cell Counting Kit-8 assays and migration and invasion assays were used to explore the effects of miR‑188 on the proliferation, migration and invasion of glioma cells, respectively. Bioinformatics analysis and luciferase reporter assays were performed to examine insulin‑like growth factor 2 mRNA-binding protein 2 (IGF2BP2) as a target gene of miR‑188. RT‑qPCR and Spearman's correlation analysis were then performed to measure IGF2BP2 mRNA expression in clinical glioma tissues and its correlation with miR‑188 expression. The regulatory effect of miR‑188 on IGF2BP2 expression was also investigated through RT‑qPCR and western blotting analysis. Finally, the biological roles of IGF2BP2 in glioma cells were assessed. miR‑188 levels were significantly reduced in glioma tissues and cell lines compared with adjacent normal tissues and normal human astrocytes, respectively. In addition, miR‑188 overexpression suppressed cell proliferation, migration and invasion of glioma. The present study identified IGF2BP2 as a direct target of miR‑188 in glioma, and IGF2BP2 under‑expression served tumour‑suppressive roles in glioma growth and metastasis. Thus, miR‑188 had a similar role in glioma by inhibiting the action of its downstream target, IGF2BP2. Therefore, miR‑188 may be a potential therapeutic target for the prevention and treatment of patients with glioma.
Collapse
Affiliation(s)
- Li Ding
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Ling Wang
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Feng Guo
- Department of Neurosurgery, Linyi People's Hospital, Linyi, Shandong 276000, P.R. China
| |
Collapse
|
21
|
Pronina IV, Loginov VI, Burdennyy AM, Fridman MV, Senchenko VN, Kazubskaya TP, Kushlinskii NE, Dmitriev AA, Braga EA. DNA methylation contributes to deregulation of 12 cancer-associated microRNAs and breast cancer progression. Gene 2017; 604:1-8. [DOI: 10.1016/j.gene.2016.12.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/11/2016] [Accepted: 12/16/2016] [Indexed: 12/01/2022]
|