1
|
Ateş A, Kurt A, Mercantepe T. Effects of mineral trioxide aggregate and methyl sulfonyl methane on pulp exposure via RUNX2 and RANKL pathways. Odontology 2024; 112:895-905. [PMID: 38194042 DOI: 10.1007/s10266-023-00885-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The aim of this study was to determine the therapeutic effects of mineral trioxide aggregate (MTA) and methyl sulfonyl methane (MSM) on pulp damage due to pulp exposure through the RUNX2 and RANKL pathways. Seventy-two male Sprague-Dawley rats aged 4-6 months and weighing 250-300 g were divided into healthy, control, MTA, and MSM groups. After experimental applications, all rats at 2, 4, and 8 weeks were killed anesthetically with xylazine hydrochloride (Rompun, Bayer) 30 mg/kg and ketamine hydrochloride (Ketalar, Pfizer) 50 mg/kg injections (i.p.). We observed that necrotic odontoblasts, edema, inflammation, and vascular congestion findings were reduced from week 2 to week 8 in the MSM treatment group after pulp capping compared to the control group and MTA group. Similarly, we found a decrease in RUNX2 and RANKL levels in the MSM application group compared to the control and MTA groups (p < 0.05). MSM material has shown therapeutic effects on pulp capping treatment-induced pulp injury via increased RUNX2 ve RANKL expression.
Collapse
Affiliation(s)
- Altar Ateş
- Department of Pediatric Dentistry, Faculty of Dentistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Ayca Kurt
- Department of Pediatric Dentistry, Faculty of Dentistry, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| | - Tolga Mercantepe
- Department of Histology and Embryology, Faculty of Medicine, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| |
Collapse
|
2
|
Toguchi A, Noguchi N, Kanno T, Yamada A. Methylsulfonylmethane Improves Knee Quality of Life in Participants with Mild Knee Pain: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023; 15:2995. [PMID: 37447322 DOI: 10.3390/nu15132995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Methylsulfonylmethane (MSM) is a food ingredient present in small amounts in many foods, and its anti-inflammatory effects have been reported. We conducted a randomized, double-blind, placebo-controlled trial of oral consumption of MSM on mild pain of the knee joint in healthy Japanese participants. A total of 88 participants were enrolled in this study and randomly assigned to MSM consumption (n = 44) and placebo control (n = 44) groups. Both groups of participants took 10 tablets, each containing 200 mg MSM or lactose, per day for 12 weeks. The primary outcome of this study was measured values of the total score of the Japanese Knee Osteoarthritis Measure (JKOM) at 12 weeks after the test sample consumption. Safety evaluation was performed through physical examination, urine analysis, peripheral blood test, and medical interview. The total scores at 12 weeks in the MSM and placebo groups as the primary outcome were significantly different (p = 0.046). The health condition of JKOM also improved after MSM consumption (p = 0.032). The questionnaire results also suggested improvement in the knee and systemic health. This study indicated that MSM oral consumption improved both knee and systemic health conditions in healthy participants who experienced mild pain in the knee joint.
Collapse
Affiliation(s)
- Akifumi Toguchi
- Department of Research and Development, Chlorella Industry Co., Ltd., Hisatomi 1343, Chikugo 833-0056, Fukuoka, Japan
| | - Naoto Noguchi
- Department of Research and Development, Chlorella Industry Co., Ltd., Hisatomi 1343, Chikugo 833-0056, Fukuoka, Japan
| | - Toshihiro Kanno
- Department of Research and Development, Chlorella Industry Co., Ltd., Hisatomi 1343, Chikugo 833-0056, Fukuoka, Japan
| | - Akira Yamada
- Research Center for Innovative Cancer Therapy, Kurume University, Kurume 830-0011, Fukuoka, Japan
| |
Collapse
|
3
|
Ribeiro VP, Costa JB, Carneiro SM, Pina S, Veloso ACA, Reis RL, Oliveira JM. Bioinspired Silk Fibroin-Based Composite Grafts as Bone Tunnel Fillers for Anterior Cruciate Ligament Reconstruction. Pharmaceutics 2022; 14:pharmaceutics14040697. [PMID: 35456531 PMCID: PMC9029049 DOI: 10.3390/pharmaceutics14040697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/14/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Anterior cruciate ligament (ACL) replacement is still a big challenge in orthopedics due to the need to develop bioinspired implants that can mimic the complexity of bone-ligament interface. In this study, we propose biomimetic composite tubular grafts (CTGs) made of horseradish peroxidase (HRP)-cross-linked silk fibroin (SF) hydrogels containing ZnSr-doped β-tricalcium phosphate (ZnSr-β-TCP) particles, as promising bone tunnel fillers to be used in ACL grafts (ACLGs) implantation. For comparative purposes, plain HRP-cross-linked SF hydrogels (PTGs) were fabricated. Sonication and freeze-drying methodologies capable of inducing crystalline β-sheet conformation were carried out to produce both the CTGs and PTGs. A homogeneous microstructure was achieved from microporous to nanoporous scales. The mechanical properties were dependent on the inorganic powder’s incorporation, with a superior tensile modulus observed on the CTGs (12.05 ± 1.03 MPa) as compared to the PTGs (5.30 ± 0.93 MPa). The CTGs presented adequate swelling properties to fill the space in the bone structure after bone tunnel enlargement and provide a stable degradation profile under low concentration of protease XIV. The in vitro studies revealed that SaOs-2 cells adhered, proliferated and remained viable when cultured into the CTGs. In addition, the bioactive CTGs supported the osteogenic activity of cells in terms of alkaline phosphatase (ALP) production, activity, and relative gene expression of osteogenic-related markers. Therefore, this study is the first evidence that the developed CTGs hold adequate structural, chemical, and biological properties to be used as bone tunnel fillers capable of connecting to the ACL tissue while stimulating bone tissue regeneration for a faster osteointegration.
Collapse
Affiliation(s)
- Viviana P. Ribeiro
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.B.C.)
| | - João B. Costa
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Correspondence: (V.P.R.); (J.B.C.)
| | - Sofia M. Carneiro
- Instituto Politécnico de Coimbra (ISEC), Departamento de Engenharia Química e Biológica (DEQB), Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; (S.M.C.); (A.C.A.V.)
| | - Sandra Pina
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Ana C. A. Veloso
- Instituto Politécnico de Coimbra (ISEC), Departamento de Engenharia Química e Biológica (DEQB), Rua Pedro Nunes, Quinta da Nora, 3030-199 Coimbra, Portugal; (S.M.C.); (A.C.A.V.)
- CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Joaquim M. Oliveira
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials, Biodegradables and Biomimetics of University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, 4805-017 Guimarães, Portugal; (S.P.); (R.L.R.); (J.M.O.)
- ICVS/3B’s—PT Government Associate Laboratory, 4710-057 Braga, Portugal
| |
Collapse
|
4
|
Dalle Carbonare L, Bertacco J, Marchetto G, Cheri S, Deiana M, Minoia A, Tiso N, Mottes M, Valenti MT. Methylsulfonylmethane enhances MSC chondrogenic commitment and promotes pre-osteoblasts formation. Stem Cell Res Ther 2021; 12:326. [PMID: 34090529 PMCID: PMC8180127 DOI: 10.1186/s13287-021-02396-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/18/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Methylsulfonylmethane (MSM) is a nutraceutical compound which has been indicated to counteract osteoarthritis, a cartilage degenerative disorder. In addition, MSM has also been shown to increase osteoblast differentiation. So far, few studies have investigated MSM role in the differentiation of mesenchymal stem cells (MSCs), and no study has been performed to evaluate its overall effects on both osteogenic and chondrogenic differentiation. These two mutually regulated processes share the same progenitor cells. METHODS Therefore, with the aim to evaluate the effects of MSM on chondrogenesis and osteogenesis, we analyzed the expression of SOX9, RUNX2, and SP7 transcription factors in vitro (mesenchymal stem cells and chondrocytes cell lines) and in vivo (zebrafish model). Real-time PCR as well Western blotting, immunofluorescence, and specific in vitro and in vivo staining have been performed. Student's paired t test was used to compare the variation between the groups. RESULTS Our data demonstrated that MSM modulates the expression of differentiation-related genes both in vitro and in vivo. The increased SOX9 expression suggests that MSM promotes chondrogenesis in treated samples. In addition, RUNX2 expression was not particularly affected by MSM while SP7 expression increased in all MSM samples/model analyzed. As SP7 is required for the final commitment of progenitors to preosteoblasts, our data suggest a role of MSM in promoting preosteoblast formation. In addition, we observed a reduced expression of the osteoclast-surface receptor RANK in larvae and in scales as well as a reduced pERK/ERK ratio in fin and scale of MSM treated zebrafish. CONCLUSIONS In conclusion, our study provides new insights into MSM mode of action and suggests that MSM is a useful tool to counteract skeletal degenerative diseases by targeting MSC commitment and differentiation.
Collapse
Affiliation(s)
- Luca Dalle Carbonare
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Jessica Bertacco
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 10, 37100, Verona, Italy
| | - Giulia Marchetto
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Samuele Cheri
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Michela Deiana
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Arianna Minoia
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Natascia Tiso
- Department of Biology, University of Padova, I-35131, Padova, Italy
| | - Monica Mottes
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie, 10, 37100, Verona, Italy
| | - Maria Teresa Valenti
- Department of Medicine, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy.
| |
Collapse
|
5
|
Ryu JH, Kang TY, Shin H, Kim KM, Hong MH, Kwon JS. Osteogenic Properties of Novel Methylsulfonylmethane-Coated Hydroxyapatite Scaffold. Int J Mol Sci 2020; 21:ijms21228501. [PMID: 33198074 PMCID: PMC7696815 DOI: 10.3390/ijms21228501] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 12/04/2022] Open
Abstract
Despite numerous advantages of using porous hydroxyapatite (HAp) scaffolds in bone regeneration, the material is limited in terms of osteoinduction. In this study, the porous scaffold made from nanosized HAp was coated with different concentrations of osteoinductive aqueous methylsulfonylmethane (MSM) solution (2.5, 5, 10, and 20%) and the corresponding MH scaffolds were referred to as MH2.5, MH5, MH10, and MH20, respectively. The results showed that all MH scaffolds resulted in burst release of MSM for up to 7 d. Cellular experiments were conducted using MC3T3-E1 preosteoblast cells, which showed no significant difference between the MH2.5 scaffold and the control with respect to the rate of cell proliferation (p > 0.05). There was no significant difference between each group at day 4 for alkaline phosphatase (ALP) activity, though the MH2.5 group showed higher level of activity than other groups at day 10. Calcium deposition, using alizarin red staining, showed that cell mineralization was significantly higher in the MH2.5 scaffold than that in the HAp scaffold (p < 0.0001). This study indicated that the MH2.5 scaffold has potential for both osteoinduction and osteoconduction in bone regeneration.
Collapse
Affiliation(s)
- Jeong-Hyun Ryu
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
| | - Tae-Yun Kang
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Hyunjung Shin
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kwang-Mahn Kim
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
| | - Min-Ho Hong
- Nature Inspired Materials Processing Research Center, Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea;
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| | - Jae-Sung Kwon
- Department and Research Institute of Dental Biomaterials and Bioengineering, Yonsei University College of Dentistry, Seoul 03722, Korea; (J.-H.R.); (T.-Y.K.); (K.-M.K.)
- BK21 PLUS Project, Yonsei University College of Dentistry, Seoul 03722, Korea
- Correspondence: (M.-H.H.); (J.-S.K.); Tel.: +82-31-299-4266 (M.-H.H.); +82-2-2228-8301 (J.-S.K.)
| |
Collapse
|
6
|
Aljohani H, Senbanjo LT, Chellaiah MA. Methylsulfonylmethane increases osteogenesis and regulates the mineralization of the matrix by transglutaminase 2 in SHED cells. PLoS One 2019; 14:e0225598. [PMID: 31805069 PMCID: PMC6894810 DOI: 10.1371/journal.pone.0225598] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 11/07/2019] [Indexed: 01/09/2023] Open
Abstract
Methylsulfonylmethane (MSM) is a naturally occurring, sulfate-containing, organic compound. It has been shown to stimulate the differentiation of mesenchymal stem cells into osteoblast-like cells and bone formation. In this study, we investigated whether MSM influences the differentiation of stem cells from human exfoliated deciduous teeth (SHED) into osteoblast-like cells and their osteogenic potential. Here, we report that MSM induced osteogenic differentiation through the expression of osteogenic markers such as osterix, osteopontin, and RUNX2, at both mRNA and protein levels in SHED cells. An increase in the activity of alkaline phosphatase and mineralization confirmed the osteogenic potential of MSM. These MSM-induced effects were observed in cells grown in basal medium but not osteogenic medium. MSM induced transglutaminase-2 (TG2), which may be responsible for the cross-linking of extracellular matrix proteins (collagen or osteopontin), and the mineralization process. Inhibition of TG2 ensued a significant decrease in the differentiation of SHED cells and cross-linking of matrix proteins. A comparison of mineralization with the use of mineralized and demineralized bone particles in the presence of MSM revealed that mineralization is higher with mineralized bone particles than with demineralized bone particles. In conclusion, these results indicated that MSM could promote differentiation and osteogenic potential of SHED cells. This osteogenic property is more in the presence of mineralized bone particles. TG2 is a likely cue in the regulation of differentiation and mineral deposition of SHED cells in response to MSM.
Collapse
Affiliation(s)
- Hanan Aljohani
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
- Department of Oral Medicine and Diagnostics Sciences, King Saud University School of Dentistry, Riyadh, KSA
| | - Linda T. Senbanjo
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
| | - Meenakshi A. Chellaiah
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, United States of America
| |
Collapse
|
7
|
Sp N, Kang DY, Kim DH, Lee HG, Park YM, Kim IH, Lee HK, Cho BW, Jang KJ, Yang YM. Methylsulfonylmethane inhibits cortisol-induced stress through p53-mediated SDHA/HPRT1 expression in racehorse skeletal muscle cells: A primary step against exercise stress. Exp Ther Med 2019; 19:214-222. [PMID: 31853292 PMCID: PMC6909739 DOI: 10.3892/etm.2019.8196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 09/25/2019] [Indexed: 11/05/2022] Open
Abstract
Cortisol is a hormone involved in stress during exercise. The application of natural compounds is a new potential approach for controlling cortisol-induced stress. Tumour suppressor protein p53 is activated during cellular stress. Succinate dehydrogenase complex subunit A (SDHA) and hypoxanthine phosphoribosyl transferase 1 (HPRT1) are considered to be two of the most stable reference genes when measuring stress during exercise in horses. In the present study cells were considered to be in a 'stressed state' if the levels of these stable genes and the highly stress responsive gene p53 were altered. It was hypothesized that a natural organic sulphur-containing compound, methylsulfonylmethane (MSM), could inhibit cortisol-induced stress in racing horse skeletal muscle cells by regulating SDHA, HPRT1 and p53 expression. After assessing cell viability using MTT assays, 20 µg/ml cortisol and 50 mM MSM were applied to horse skeletal muscle cell cultures. Reverse transcription-quantitative PCR and western blot analysis demonstrated increases in SDHA, HPRT1 and p53 expression in cells in response to cortisol treatment, which was inhibited or normalized by MSM treatment. To determine the relationship between p53 and SDHA/HPRT1 expression at a transcriptional level, horse gene sequences of SDHA and HPRT1 were probed to identify novel binding sites for p53 in the gene promoters, which were confirmed using a chromatin immunoprecipitation assay. The relationship between p53 and SDHA/HPRT1 expression was confirmed using western blot analysis following the application of pifithrin-α, a p53 inhibitor. These results suggested that MSM is a potential candidate drug for the inhibition of cortisol-induced stress in racehorse skeletal muscle cells.
Collapse
Affiliation(s)
- Nipin Sp
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Dong Young Kang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Do Hoon Kim
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Hyo Gun Lee
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Yeong-Min Park
- Department of Immunology, School of Medicine, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Il Ho Kim
- Nara Biotech Co., Ltd., Jeonju, Jeollabuk 54852, Republic of Korea
| | - Hak Kyo Lee
- Department of Animal Biotechnology, Chonbuk National University, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, Gyeongsangnam 50463, Republic of Korea
| | - Kyoung-Jin Jang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| | - Young Mok Yang
- Department of Pathology, School of Medicine, Institute of Biomedical Science and Technology, Konkuk University, Chungju, Chungcheongbuk 27478, Republic of Korea
| |
Collapse
|
8
|
Chen M, Guo W, Gao S, Hao C, Shen S, Zhang Z, Wang Z, Wang Z, Li X, Jing X, Zhang X, Yuan Z, Wang M, Zhang Y, Peng J, Wang A, Wang Y, Sui X, Liu S, Guo Q. Biochemical Stimulus-Based Strategies for Meniscus Tissue Engineering and Regeneration. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8472309. [PMID: 29581987 PMCID: PMC5822894 DOI: 10.1155/2018/8472309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/19/2017] [Indexed: 12/18/2022]
Abstract
Meniscus injuries are very common and still pose a challenge for the orthopedic surgeon. Meniscus injuries in the inner two-thirds of the meniscus remain incurable. Tissue-engineered meniscus strategies seem to offer a new approach for treating meniscus injuries with a combination of seed cells, scaffolds, and biochemical or biomechanical stimulation. Cell- or scaffold-based strategies play a pivotal role in meniscus regeneration. Similarly, biochemical and biomechanical stimulation are also important. Seed cells and scaffolds can be used to construct a tissue-engineered tissue; however, stimulation to enhance tissue maturation and remodeling is still needed. Such stimulation can be biomechanical or biochemical, but this review focuses only on biochemical stimulation. Growth factors (GFs) are one of the most important forms of biochemical stimulation. Frequently used GFs always play a critical role in normal limb development and growth. Further understanding of the functional mechanism of GFs will help scientists to design the best therapy strategies. In this review, we summarize some of the most important GFs in tissue-engineered menisci, as well as other types of biological stimulation.
Collapse
Affiliation(s)
- Mingxue Chen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shunag Gao
- Center for Biomaterial and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, No. 5 Yiheyuan Road, Haidian District, Peking University, Beijing 100871, China
| | - Chunxiang Hao
- Institute of Anesthesiology, Chinese PLA General Hospital, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shi Shen
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- Department of Bone and Joint Surgery, The Affiliated Hospital of Southwest Medical University, No. 25 Taiping Road, Luzhou 646000, China
| | - Zengzeng Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Zhenyong Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Zehao Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xu Li
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoguang Jing
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- First Department of Orthopedics, First Affiliated Hospital of Jiamusi University, No. 348 Dexiang Road, Xiangyang District, Jiamusi 154002, China
| | - Xueliang Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
- Shanxi Traditional Chinese Hospital, No. 46 Binzhou West Street, Yingze District, Taiyuan 030001, China
| | - Zhiguo Yuan
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingjie Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Zhang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Jiang Peng
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, No. 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|
9
|
de Sousa Rosa FS, Stuepp RT, Modolo F, Biz MT. Effect of organic silicon, methylsulfonylmethane, and glucosamine sulfate in mandibular bone defects in rats. Microsc Res Tech 2017; 80:1161-1166. [DOI: 10.1002/jemt.22911] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/08/2017] [Accepted: 07/06/2017] [Indexed: 11/09/2022]
Affiliation(s)
| | - Rúbia Teodoro Stuepp
- Dentistry Graduate Program; Federal University of Santa Catarina; CEP: 88040-970 Florianópolis SC Brazil
| | - Filipe Modolo
- Pathology Department and Dentistry Graduate Program; Federal University of Santa Catarina; CEP: 88040-970 Florianópolis SC Brazil
| | - Michelle Tillmann Biz
- Morphology Sciences Department and Dentistry Graduate Program; Federal University of Santa Catarina; CEP: 88040-970 Florianópolis SC Brazil
| |
Collapse
|
10
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
11
|
Park JS, Yi SW, Kim HJ, Kim SM, Park KH. Regulation of Cell Signaling Factors Using PLGA Nanoparticles Coated/Loaded with Genes and Proteins for Osteogenesis of Human Mesenchymal Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30387-30397. [PMID: 27792311 DOI: 10.1021/acsami.6b08343] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transfection of specific genes and transportation of proteins into cells have been a focus of stem cell differentiation research. However, it is not easy to regulate codelivery of a gene and a protein into cells. For codelivery into undifferentiated cells (human mesenchymal stem cells (hMSCs)), we used biodegradable carriers loaded with Runt-related transcription factor 2 (RUNX2) protein and coated with bone morphogenetic protein 2 (BMP2) plasmid DNA (pDNA) to induce osteogenesis. The released gene and protein were first localized in the cytosol of transfected hMSCs, and the gene then moved into the nucleus. The levels of internalized PLGA nanoparticles were tested using different doses and incubation durations. Then, transfection of BMP2 pDNA was confirmed by determining mRNA and protein levels and acquiring cell images. The same techniques were used to assess osteogenesis of hMSCs both in vitro and in vivo upon internalization of PLGA NPs carrying the BMP2 gene and RUNX2 protein. Detection of specific genes and proteins demonstrated that cells transfected with PLGA NPs carrying both the BMP2 gene and RUNX2 protein were highly differentiated compared with other samples. Histological and immunofluorescence analyses demonstrated that transfection of PLGA nanoparticles carrying both the BMP2 gene and RUNX2 protein dramatically enhanced osteogenesis of hMSCs.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Se Won Yi
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Hye Jin Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Seong Min Kim
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| | - Keun-Hong Park
- Department of Biomedical Science, College of Life Science, CHA University , 6F CHA Bio-complex, 689 Sampyeong-dong Bundang-gu, Seongnam-si, 463-400, Korea
| |
Collapse
|