1
|
Jia QJ, Yao CL. p38 MAPK involvement in the thermal stress response occurs via HSP27 and caspase3 in the large yellow croaker (Larimichthys crocea). Comp Biochem Physiol B Biochem Mol Biol 2024; 270:110912. [PMID: 37918461 DOI: 10.1016/j.cbpb.2023.110912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/04/2023]
Abstract
The p38 mitogen-activated protein kinase (p38 MAPK) is a multifunctional molecule that is involved in cellular response to various stressful stimuli. In the present study, the full-length cDNA sequence of p38 MAPK (Lcp38 MAPK) was identified from the large yellow croaker Larimichthys crocea, which encoded a polypeptide of 361 amino acid residues. The predicted Lcp38 MAPK protein contained a highly conserved Thr-Gly-Tyr (TGY) motif, a glutamate and aspartate (ED) site, a substrate binding site (Ala-Thr-Arg-Trp < ATRW>), and a serine/threonine kinase catalytic (S_TKc) domain characteristic of the MAPK family. The constitutive expression of Lcp38 MAPK was detected in most of the tissues examined with the strongest expression in intestine. Subcellular localization in LCK cells (kidney cell line from a L. crocea) revealed that Lcp38 MAPK existed in both the cytoplasm and cell nucleus. The expression of Lcp38 MAPK after temperature stress was tested in LCK cells. The results indicated that Lcp38 MAPK transcripts were significantly upregulated under both cold (10 °C) and heat stress (35 °C) (P < 0.05). Furthermore, the phosphorylation levels of p38 MAPK as well the transcriptional levels of heat shock protein 27 (HSP27) and caspase3 in LCK cells were significantly induced under thermal exposure (P < 0.05). However, the cold- and heat induced HSP27 and caspase3 expression was significantly suppressed by SB203580, a specific inhibitor of p38-MAPK (P < 0.05). These findings indicated that Lcp38 MAPK might be involved in the cellular stress response via HSP27 and caspase3 in large yellow croaker.
Collapse
Affiliation(s)
- Qiao-Jing Jia
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China; Otolaryngology Department, the Second Hospital of Hebei Medical University, Shijiazhuang 05000, China
| | - Cui-Luan Yao
- State Key Laboratory of Mariculture Breeding, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
2
|
Li X, Zheng J, Wang J, Tang X, Zhang F, Liu S, Liao Y, Chen X, Xie W, Tang Y. Effects of Uremic Clearance Granules on p38 MAPK/NF-κB Signaling Pathway, Microbial and Metabolic Profiles in End-Stage Renal Disease Rats Receiving Peritoneal Dialysis. Drug Des Devel Ther 2022; 16:2529-2544. [PMID: 35946040 PMCID: PMC9357387 DOI: 10.2147/dddt.s364069] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 07/26/2022] [Indexed: 11/23/2022] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Xiaosheng Li
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jie Zheng
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Jian Wang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xianhu Tang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Fengxia Zhang
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Shufeng Liu
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yunqiang Liao
- First Clinical Medical College of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Xiaoqing Chen
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Wenjuan Xie
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
| | - Yang Tang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, People’s Republic of China
- Correspondence: Yang Tang, Department of Traditional Chinese Medicine, The First Affiliated Hospital of Gannan Medical University, Qingnian Road, Suite 23, Ganzhou, 341000, People’s Republic of China, Email
| |
Collapse
|
3
|
Zong Q, Jing P, Sun S, Wang H, Wu S, Bao W. Effects of HSP27 gene expression on the resistance to Escherichia coli infection in piglets. Gene 2021; 773:145415. [PMID: 33444678 DOI: 10.1016/j.gene.2021.145415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/05/2020] [Accepted: 01/05/2021] [Indexed: 12/29/2022]
Abstract
Heat shock protein 27 (HSP27) plays an important role in protecting cells from various stress factors. This study aimed to investigate the function of HSP27 gene and its regulatory mechanism as infected by Escherichia coli (E. coli) at the tissue and cellular levels. Real-time PCR was used to detect the differential expression of HSP27 gene in F18 resistant and sensitive Sutai pigs and the differential expression upon E. coli F18ab, F18ac, K88ac bacterial supernatant, thallus infection and LPS induction in IPEC-J2. In addition, the HSP27 gene overexpression vector was constructed to detect the effect of the HSP27 gene overexpression on the adhesion of E. coli F18 to IPEC-J2, secretion of pro-inflammatory factors, and the expression of the upstream key genes in Mitogen-activated protein kinase (MAPK) pathway. Ribosomal S6 kinase (RSK2) is an important protein in the MAPK pathway. Therefore, the RSK2 gene overexpression vector was constructed and the number of colonies was counted after co-transfection of HSP27 and RSK2 gene. Results revealed that the expression level of HSP27 gene in resistant individuals in 11 tissues was higher than sensitive type. At the cellular level, the relative expression levels of HSP27 gene were increased after F18ab, F18ac bacterial supernatant, F18ab thallus infection, and LPS induction for 4 h (P < 0.01). The adhesion ability of E. coli F18ab to IPEC-J2 was significantly reduced after HSP27 gene overexpression (P < 0.01), and the concentration of pro-inflammatory factors in the HSP27 gene overexpression group was significantly reduced compared with the control group after F18ab infection (P < 0.05). Furthermore, the expression of RSK2 was significantly increased in HSP27 overexpression group upon F18ab infection (P < 0.01). The colonies quantitative results also showed that the number of colonies was significantly reduced after co-transfection of HSP27 and RSK2 gene. We indicated that the high expression of HSP27 gene may resist the inflammatory response caused by exogenous stress and enhance the ability of IPEC-J2 to resist E. coli F18 infection. RSK2 gene in the MAPK pathway may cooperate with HSP27 gene to participate in the immune response of the organism, which provides a theoretical basis for the study of the mechanism of anti-E. coli infection in piglets.
Collapse
Affiliation(s)
- Qiufang Zong
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Pengfei Jing
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Shouyong Sun
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China
| | - Haifei Wang
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shenglong Wu
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Wenbin Bao
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
4
|
Xu J, Tang S, Song E, Yin B, Wu D, Bao E. Hsp70 expression induced by Co-Enzyme Q10 protected chicken myocardial cells from damage and apoptosis under in vitro heat stress. Poult Sci 2018; 96:1426-1437. [PMID: 27794544 DOI: 10.3382/ps/pew402] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/07/2016] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to investigate whether induction of Hsp70 expression by co-enzyme Q10 (Q10) treatment protects chicken primary myocardial cells (CPMCs) from damage and apoptosis in response to heat stress for 5 hours. Analysis of the expression and distribution of Hsp70 and the levels of the damage-related enzymes creatine kinase-MB (CK-MB) and lactate dehydrogenase (LDH), as well as pathological analysis showed that co-enzyme Q10 alleviated the damage caused to CPMCs during heat stress. Further, analysis of cell apoptosis and the expression of cleaved caspase-3 indicated that co-enzyme Q10 did have an anti-apoptotic role during heat stress. Western blot analysis showed that pretreatment with co-enzyme Q10 led to a significant increase in the expression of Hsp70 during heat stress. Immunostaining assays confirmed the results of western blot analysis and also showed that co-enzyme Q10 could accelerate the translocation of Hsp70 into the nucleus during heat stress, but this was not observed in the group that was treated with only co-enzyme Q10. These findings seem to indicate that co-enzyme Q10 protected CPMCs from heat stress via the induction of Hsp70. To investigate this, 200 μM quercetin, an Hsp70 inhibitor, was used to inhibit the expression of Hsp70 2 h before heat stress. Quercetin pre-treatment was observed to suppress the expression of Hsp70 as well the protective function of co-enzyme Q10 at 5 h of heat stress. This finding confirms that Q10 brought about its effects via Hsp70 expression, but the mechanism underlying this needs further investigation.
Collapse
|
5
|
Co-enzyme Q10 upregulates Hsp70 and protects chicken primary myocardial cells under in vitro heat stress via PKC/MAPK. Mol Cell Biochem 2018; 449:195-206. [DOI: 10.1007/s11010-018-3356-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 04/16/2018] [Indexed: 01/10/2023]
|
6
|
Bain AR, Ainslie PN, Bammert TD, Hijmans JG, Sekhon M, Hoiland RL, Flück D, Donnelly J, DeSouza CA. Passive heat stress reduces circulating endothelial and platelet microparticles. Exp Physiol 2018; 102:663-669. [PMID: 28397383 DOI: 10.1113/ep086336] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 04/06/2017] [Indexed: 01/06/2023]
Abstract
NEW FINDINGS What is the central question of this study? Does passive heat stress of +2°C oesophageal temperature change concentrations of circulating arterial endothelial- and platelet-derived microparticles in healthy adults? What is the main finding and its importance? Concentrations of circulating endothelial- and platelet-derived microparticles were markedly decreased in heat stress. Reductions in circulating microparticles might indicate favourable vascular changes associated with non-pathological hyperthermia. Interest in circulating endothelial- and platelet-derived microparticles (EMPs and PMPs, respectively) has increased because of their potential pathogenic role in vascular disease and as biomarkers for vascular health. Hyperthermia is commonly associated with a pro-inflammatory stress but might also provide vascular protection when the temperature elevation is non-pathological. Circulating microparticles might contribute to the cellular adjustments and resultant vascular impacts of hyperthermia. Here, we determined whether circulating concentrations of arterial EMPs and PMPs are altered by passive heat stress (+2°C oesophageal temperature). Ten healthy young men (age 23 ± 3 years) completed the study. Hyperthermia was achieved by circulating ∼49°C water through a water-perfused suit that covered the entire body except the hands, feet and head. Arterial (radial) blood samples were obtained immediately before heating (normothermia) and in hyperthermia. The mean ± SD oesophageal temperature in normothermia was 37.2 ± 0.1°C and in hyperthermia 39.1 ± 0.1°C. Concentrations of circulating EMPs and PMPs were markedly decreased in hyperthermia. Activation-derived EMPs were reduced by ∼30% (mean ± SD; from 61 ± 8 to 43 ± 7 microparticles μl-1 ; P < 0.05) and apoptosis-derived EMPs by ∼45% (from 46 ± 7 to 23 ± 3 microparticles μl-1 ; P < 0.05). Likewise, circulating PMPs were reduced by ∼75% in response to hyperthermia (from 256 ± 43 to 62 ± 14 microparticles μl-1 ). These beneficial reductions in circulating EMPs and PMPs in response to a 2°C increase in core temperature might partly underlie the reported vascular improvements following therapeutic bouts of physiological hyperthermia.
Collapse
Affiliation(s)
- Anthony R Bain
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA.,Faculty of Health and Social Development, Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Philip N Ainslie
- Faculty of Health and Social Development, Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Tyler D Bammert
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA
| | - Jamie G Hijmans
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA
| | - Mypinder Sekhon
- Faculty of Health and Social Development, Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, BC, Canada.,Division of Critical Care Medicine and Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Ryan L Hoiland
- Faculty of Health and Social Development, Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Daniela Flück
- Faculty of Health and Social Development, Centre for Heart, Lung & Vascular Health, University of British Columbia, Kelowna, BC, Canada
| | - Joseph Donnelly
- Brain Physics Laboratory, Division of Academic Neurosurgery, Department of Clinical Neurosciences, Addenbrookes Hospital, University of Cambridge, Cambridge, UK
| | - Christopher A DeSouza
- Department of Integrative Physiology, Integrative Vascular Biology Laboratory, University of Colorado, Boulder, CO, USA
| |
Collapse
|
7
|
Effect of parenteral glutamine supplementation combined with enteral nutrition on Hsp90 expression and Peyer's patch apoptosis in severely burned rats. Nutrition 2018; 47:97-103. [PMID: 29429543 DOI: 10.1016/j.nut.2017.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 11/22/2022]
Abstract
OBJECTIVES The aim of this study was to investigate the effects of parenteral glutamine (GLN) supplementation combined with enteral nutrition (EN) on heat shock protein (Hsp) 90 expression and Peyer's patch (PP) apoptosis in severely burned rats. METHODS Male Sprague-Dawley (SD) rats were randomly assigned to four groups: Sham burn + EN + GLN-free amino acid (AA; n = 10), sham burn + EN + GLN (n = 10), burn + EN + AA (n = 10), and burn + EN + GLN (n = 10). Two hours after a 30% total body surface area (TBSA), full-thickness scald burn injury on the back, burned rats in two of the experimental groups (burn + EN + AA and burn + EN + GLN groups) were fed with a conventional EN solution by oral gavage for 7 d. Simultaneously, rats in the burn + EN + GLN group were given 0.35 g GLN/kg body weight/d once via a tail vein injection for 7 d and rats in the burn + EN + AA group were administered isocaloric/isonitrogenous GLN-free amino acid solution (Tyrosine) for comparison. Rats in two sham burn control groups (sham burn + EN + AA and sham burn + EN + GLN groups) were treated in the same manner except for the burn injury. All rats in the four groups were given 175 kcal/kg body wt/d. There was isonitrogenous, isovolumic, and isocaloric intake among the four groups. At the end of the seventh day after completion of the nutritional program, all rats were anesthetized and samples were collected for further analysis. PP apoptosis was measured by terminal deoxyuridine nick-end labeling (TUNEL). The expression of Hsp90 in PPs was analyzed by western blotting. Caspase-3 activity of PPs was also assessed. Levels of proinflammatory cytokines of gut tissues were evaluated by enzyme-linked immunosorbent assay (ELISA). The intestinal immunoglobulin A (IgA) content was also determined by ELISA. RESULTS The results revealed that intestinal IgA content in rats of the burn + EN + GLN group were significantly increased compared with those in the burn + EN + AA group (P < 0.05). The expression of Hsp90 of PPs in rats in the burn + EN + GLN group was significantly upregulated compared with those in the burn + EN + AA group (P < 0.05). On the other hand, levels of proinflammatory cytokines of gut tissues, caspase-3 activity, and the number of TUNEL-stained cells of PPs in rats of the burn + EN + GLN group were markedly decreased compared with those of the burn + EN + AA group (P < 0.05). CONCLUSIONS The results of this study show that parenteral glutamine supplementation combined with EN may upregulate the expression of Hsp90, reduce caspase-3 activity, lessen the release of proinflammatory cytokines, attenuate PP apoptosis, and improve intestinal IgA response in burned rats. Clinically, therapeutic efforts to improve intestinal immunity may contribute to a favorable outcome in severely burned patients.
Collapse
|
8
|
Schnoor M, García Ponce A, Vadillo E, Pelayo R, Rossaint J, Zarbock A. Actin dynamics in the regulation of endothelial barrier functions and neutrophil recruitment during endotoxemia and sepsis. Cell Mol Life Sci 2017; 74:1985-1997. [PMID: 28154894 PMCID: PMC11107778 DOI: 10.1007/s00018-016-2449-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 01/20/2023]
Abstract
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.
Collapse
Affiliation(s)
- Michael Schnoor
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico.
| | - Alexander García Ponce
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Eduardo Vadillo
- Department for Molecular Biomedicine, Centre for Investigation and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Av. IPN 2508, San Pedro Zacatenco, GAM, 07360, Mexico City, Mexico
| | - Rosana Pelayo
- Oncology Research Unit, National Medical Center, Mexican Institute for Social Security, 06720, Mexico City, Mexico
| | - Jan Rossaint
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany
| | - Alexander Zarbock
- Department of Anaesthesiology, Critical Care and Pain Medicine, University Hospital Münster, Albert-Schweitzer-Campus 1, Building A1, 48149, Münster, Germany.
| |
Collapse
|
9
|
Graner AN, Hellwinkel JE, Lencioni AM, Madsen HJ, Harland TA, Marchando P, Nguyen GJ, Wang M, Russell LM, Bemis LT, Anchordoquy TJ, Graner MW. HSP90 inhibitors in the context of heat shock and the unfolded protein response: effects on a primary canine pulmonary adenocarcinoma cell line. Int J Hyperthermia 2016; 33:303-317. [PMID: 27829290 DOI: 10.1080/02656736.2016.1256503] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Agents targeting HSP90 and GRP94 are seldom tested in stressed contexts such as heat shock (HS) or the unfolded protein response (UPR). Tumor stress often activates HSPs and the UPR as pro-survival mechanisms. This begs the question of stress effects on chemotherapeutic efficacy, particularly with drugs targeting chaperones such as HSP90 or GRP94. We tested the utility of several HSP90 inhibitors, including PU-H71 (targeting GRP94), on a primary canine lung cancer line under HS/UPR stress compared to control conditions. METHODS We cultured canine bronchoalveolar adenocarcinoma cells that showed high endogenous HSP90 and GRP94 expression; these levels substantially increased upon HS or UPR induction. We treated cells with HSP90 inhibitors 17-DMAG, 17-AAG or PU-H71 under standard conditions, HS or UPR. Cell viability/survival was assayed. Antibody arrays measured intracellular signalling and apoptosis profiles. RESULTS HS and UPR had varying effects on cells treated with different HSP90 inhibitors; in particular, HS and UPR promoted resistance to inhibitors in short-term assays, but combinations of UPR stress and PU-H571 showed potent cytotoxic activity in longer-term assays. Array data indicated altered signalling pathways, with apoptotic and pro-survival implications. UPR induction + dual targeting of HSP90 and GRP94 swayed the balance toward apoptosis. CONCLUSION Cellular stresses, endemic to tumors, or interventionally inducible, can deflect or enhance chemo-efficacy, particularly with chaperone-targeting drugs. Stress is likely not held accountable when testing new pharmacologics or assessing currently-used drugs. A better understanding of stress impacts on drug activities should be critical in improving therapeutic targeting and in discerning mechanisms of drug resistance.
Collapse
Affiliation(s)
- Arin N Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Justin E Hellwinkel
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Alex M Lencioni
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,c University of Arkansas for Medical Sciences , Little Rock , AR , USA
| | - Helen J Madsen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Tessa A Harland
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA.,b School of Medicine , University of Colorado School of Medicine , Aurora , CO , USA
| | - Paul Marchando
- d Department of Chemical and Biological Engineering , University of Colorado Boulder , Boulder , CO , USA
| | - Ger J Nguyen
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Mary Wang
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Laura M Russell
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| | - Lynne T Bemis
- e Department of Biomedical Sciences , University of Minnesota , Duluth , MN , USA
| | - Thomas J Anchordoquy
- f Skaggs School of Pharmacy and Pharmaceutical Sciences , University of Colorado Denver , Aurora , CO , USA
| | - Michael W Graner
- a Department of Neurosurgery , University of Colorado Denver , Aurora , CO , USA
| |
Collapse
|