1
|
Zhang C, Yao J, Liu C, Yang K, Zhang W, Sun D, Gu W. The Role of Thyroid Hormone Synthesis Gene-Related miRNAs Profiling in Structural and Functional Changes of The Thyroid Gland Induced by Excess Iodine. Biol Trace Elem Res 2024; 202:580-596. [PMID: 37243879 DOI: 10.1007/s12011-023-03691-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 05/29/2023]
Abstract
At recent years, the impairment caused by iodine excess are paid more attention. However, there is still largely unknown about the exact mechanism induced by excessive iodine. MiRNAs have been found to act as biomarkers for a variety of diseases, whereas fewer studies focused on miRNAs related to a cluster of genes regulating thyroid hormone synthesis, such as NIS, Pendrin, TPO, MCT8, TSHR, TSHα, and TSHβ-related miRNAs in structural and functional changes of the thyroid gland induced by subchronic and chronic high iodine exposure. In the present study, one hundred and twenty 4-week-old female Wistar rats were randomly divided into control group (I50µg/L KIO3); HI 1 (I6000µg/L KIO3); HI 2 (I10000µg/L KIO3); and HI 3 (I50000µg/L KIO3), the exposure period was 3 months and 6 months, respectively. The iodine contents in the urine and blood, thyroid function, and pathological changes were determined. In addition, levels of thyroid hormone synthesis genes and the associated miRNAs profiling were detected. The results showed that subclinical hypothyroidism occurred in the high iodine groups with subchronic high iodine exposure, while 6-month exposure led to hypothyroidism in the I10000µg/L and I50000µg/L groups. Subchronic and chronic high iodine exposure caused mRNA and protein levels of NIS, TPO, and TSHR decreased significantly, and Pendrin expression increased significantly. In addition, MCT8 mRNA and protein levels are only remarkably decreased under the subchronic exposure. PCR results showed that levels of miR-200b-3p, miR-185-5p, miR-24-3p, miR-200a-3p, and miR-25-3p increased significantly exposed to high iodine for 3 months, while miR-675-5p, miR-883-5p, and miR-300-3p levels increased significantly under the exposure to high iodine for 6 months. In addition, miR-1839-3p level was markedly decreased exposed to high iodine for 3 and 6 months. Taken together, the miRNA profiling of genes regulating thyroid hormone synthesis remarkably altered from subclinical hypothyroidism to hypothyroidism induced by excess iodine exposure, and some miRNAs may play an important role in subclinical hypothyroidism or hypothyroidism through regulating NIS, Pendrin, TPO, MCT8, and TSHR providing promising targets to alleviate the impairment on the structure and function of thyroid gland.
Collapse
Affiliation(s)
- Chunyu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province &, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Ministry of Health, 157# Baojian Road Harbin, 150081, Harbin, China
| | - Jinyin Yao
- Department of Public Health, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chang Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province &, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Ministry of Health, 157# Baojian Road Harbin, 150081, Harbin, China
| | - Kunying Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province &, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Ministry of Health, 157# Baojian Road Harbin, 150081, Harbin, China
| | - Wei Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province &, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Ministry of Health, 157# Baojian Road Harbin, 150081, Harbin, China.
| | - Dianjun Sun
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province &, Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Ministry of Health, 157# Baojian Road Harbin, 150081, Harbin, China.
| | - Weikuan Gu
- Department of Orthopedic Surgery and BME-Campbell Clinic, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| |
Collapse
|
2
|
Fan Y, Fan X, Yan H, Liu Z, Wang X, Yuan Q, Xie J, Lu X, Yang Y. Hypermethylation of microRNA-497-3p contributes to progression of thyroid cancer through activation of PAK1/β-catenin. Cell Biol Toxicol 2023; 39:1979-1994. [PMID: 35066776 DOI: 10.1007/s10565-021-09682-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 11/18/2021] [Indexed: 11/02/2022]
Abstract
MicroRNA-497 (miR-497) has been reported to be a tumor-suppressive miRNA in thyroid cancer (TC), yet the mechanism is not clearly defined. In this study, we aim to determine the mechanism by which miR-497-3p affects the progression of TC. After characterization of low miR-497-3p expression pattern in TC and normal tissues, we assessed the correlation between miR-497-3p expression and clinicopathological features of TC patients. Its low expression shared associations with advanced tumor stage and lymph node metastasis. ChIP and methylation-specific PCR provided data showing that downregulation of miR-497-3p in TC tissues was induced by DNA methyltransferase-mediated hypermethylation. By performing dual-luciferase reporter assay, we identified that miR-497-3p targeted PAK1 while PAK1 could inhibit β-catenin expression. Through this mechanism, miR-497-3p exerted the anti-proliferative, anti-invasive, pro-apoptotic, and anti-tumorigenic effects on TC cells on the strength of the results from gain-of-function and rescue experiments. This study suggested that hypermethylation of miR-497-3p resulted in upregulation of β-catenin dependent on PAK1 and contributed to cancer progression in TC, which highlighted one of miR-mediated tumorigenic mechanism.
Collapse
Affiliation(s)
- Yuxia Fan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Xin Fan
- Department of Urology Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, People's Republic of China
| | - Hao Yan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Zheng Liu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Xiaoming Wang
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Qingling Yuan
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Jie Xie
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China
| | - Xiubo Lu
- Department of Thyroid Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China.
| | - Yang Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450000, People's Republic of China.
| |
Collapse
|
3
|
Dobrigna M, Poëa-Guyon S, Rousseau V, Vincent A, Toutain A, Barnier JV. The molecular basis of p21-activated kinase-associated neurodevelopmental disorders: From genotype to phenotype. Front Neurosci 2023; 17:1123784. [PMID: 36937657 PMCID: PMC10017488 DOI: 10.3389/fnins.2023.1123784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Although the identification of numerous genes involved in neurodevelopmental disorders (NDDs) has reshaped our understanding of their etiology, there are still major obstacles in the way of developing therapeutic solutions for intellectual disability (ID) and other NDDs. These include extensive clinical and genetic heterogeneity, rarity of recurrent pathogenic variants, and comorbidity with other psychiatric traits. Moreover, a large intragenic mutational landscape is at play in some NDDs, leading to a broad range of clinical symptoms. Such diversity of symptoms is due to the different effects DNA variations have on protein functions and their impacts on downstream biological processes. The type of functional alterations, such as loss or gain of function, and interference with signaling pathways, has yet to be correlated with clinical symptoms for most genes. This review aims at discussing our current understanding of how the molecular changes of group I p21-activated kinases (PAK1, 2 and 3), which are essential actors of brain development and function; contribute to a broad clinical spectrum of NDDs. Identifying differences in PAK structure, regulation and spatio-temporal expression may help understanding the specific functions of each group I PAK. Deciphering how each variation type affects these parameters will help uncover the mechanisms underlying mutation pathogenicity. This is a prerequisite for the development of personalized therapeutic approaches.
Collapse
Affiliation(s)
- Manon Dobrigna
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Sandrine Poëa-Guyon
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Véronique Rousseau
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
| | - Aline Vincent
- Department of Genetics, EA7450 BioTARGen, University Hospital of Caen, Caen, France
| | - Annick Toutain
- Department of Genetics, University Hospital of Tours, UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
| | - Jean-Vianney Barnier
- Institut des Neurosciences Paris-Saclay, UMR 9197, CNRS, Université Paris-Saclay, Saclay, France
- *Correspondence: Jean-Vianney Barnier,
| |
Collapse
|
4
|
Chen S, Wang Y, Li D, Wang H, Zhao X, Yang J, Chen L, Guo M, Zhao J, Chen C, Zhou Y, Liang G, Xu L. Mechanisms Controlling MicroRNA Expression in Tumor. Cells 2022; 11:cells11182852. [PMID: 36139427 PMCID: PMC9496884 DOI: 10.3390/cells11182852] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/06/2022] [Accepted: 09/09/2022] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are widely present in many organisms and regulate the expression of genes in various biological processes such as cell differentiation, metabolism, and development. Numerous studies have shown that miRNAs are abnormally expressed in tumor tissues and are closely associated with tumorigenesis. MiRNA-based cancer gene therapy has consistently shown promising anti-tumor effects and is recognized as a new field in cancer treatment. So far, some clinical trials involving the treatment of malignancies have been carried out; however, studies of miRNA-based cancer gene therapy are still proceeding slowly. Therefore, furthering our understanding of the regulatory mechanisms of miRNA can bring substantial benefits to the development of miRNA-based gene therapy or other combination therapies and the clinical outcome of patients with cancer. Recent studies have revealed that the aberrant expression of miRNA in tumors is associated with promoter sequence mutation, epigenetic alteration, aberrant RNA modification, etc., showing the complexity of aberrant expression mechanisms of miRNA in tumors. In this paper, we systematically summarized the regulation mechanisms of miRNA expression in tumors, with the aim of providing assistance in the subsequent elucidation of the role of miRNA in tumorigenesis and the development of new strategies for tumor prevention and treatment.
Collapse
Affiliation(s)
- Shipeng Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Wang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Dongmei Li
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Hui Wang
- The Second Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xu Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Jing Yang
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Longqing Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Mengmeng Guo
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Juanjuan Zhao
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Chao Chen
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
| | - Ya Zhou
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Medical Physics, Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| | - Guiyou Liang
- Department of Cardiovascular Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550031, China
- Department of Cardiovascular Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| | - Lin Xu
- Special Key Laboratory of Gene Detection and Therapy & Base for Talents in Biotherapy of Guizhou Province, Zunyi 563000, China
- Department of Immunology, Zunyi Medical University, Zunyi 563000, China
- Correspondence: (Y.Z.); (G.L.); (L.X.)
| |
Collapse
|
5
|
Morales-Martínez M, Vega MI. Role of MicroRNA-7 (MiR-7) in Cancer Physiopathology. Int J Mol Sci 2022; 23:ijms23169091. [PMID: 36012357 PMCID: PMC9408913 DOI: 10.3390/ijms23169091] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
miRNAs are non-coding RNA sequences of approximately 22 nucleotides that interact with genes by inhibiting their translation through binding to their 3′ or 5′ UTR regions. Following their discovery, the role they play in the development of various pathologies, particularly cancer, has been studied. In this context, miR-7 is described as an important factor in the development of cancer because of its role as a tumor suppressor, regulating a large number of genes involved in the development and progression of cancer. Recent data support the function of miR-7 as a prognostic biomarker in cancer, and miR-7 has been proposed as a strategy in cancer therapy. In this work, the role of miR-7 in various types of cancer is reviewed, illustrating its regulation, direct targets, and effects, as well as its possible relationship to the clinical outcome of cancer patients.
Collapse
Affiliation(s)
- Mario Morales-Martínez
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
| | - Mario I. Vega
- Molecular Signal Pathway in Cancer Laboratory, UIMEO, Oncology Hospital, Siglo XXI National Medical Center, IMSS, Mexico City 06720, Mexico
- Department of Medicine, Hematology-Oncology Division, Greater Los Angeles VA Healthcare Center, UCLA Medical Center, Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Correspondence: or
| |
Collapse
|
6
|
Hamidi AA, Taghehchian N, Basirat Z, Zangouei AS, Moghbeli M. MicroRNAs as the critical regulators of cell migration and invasion in thyroid cancer. Biomark Res 2022; 10:40. [PMID: 35659780 PMCID: PMC9167543 DOI: 10.1186/s40364-022-00382-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/07/2022] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is one of the most frequent endocrine malignancies that is more common among females. Tumor recurrence is one of the most important clinical manifestations in differentiated TC which is associated with different factors including age, tumor size, and histological features. Various molecular processes such as genetic or epigenetic modifications and non-coding RNAs are also involved in TC progression and metastasis. The epithelial-to-mesenchymal transition (EMT) is an important biological process during tumor invasion and migration that affects the initiation and transformation of early-stage tumors into invasive malignancies. A combination of transcription factors, growth factors, signaling pathways, and epigenetic regulations affect the thyroid cell migration and EMT process. MicroRNAs (miRNAs) are important molecular factors involved in tumor metastasis by regulation of EMT-activating signaling pathways. Various miRNAs are involved in the signaling pathways associated with TC metastasis which can be used as diagnostic and therapeutic biomarkers. Since, the miRNAs are sensitive, specific, and non-invasive, they can be suggested as efficient and optimal biomarkers of tumor invasion and metastasis. In the present review, we have summarized all of the miRNAs which have been significantly involved in thyroid tumor cells migration and invasion. We also categorized all of the reported miRNAs based on their cellular processes to clarify the molecular role of miRNAs during thyroid tumor cell migration and invasion. This review paves the way of introducing a non-invasive diagnostic and prognostic panel of miRNAs in aggressive and metastatic TC patients.
Collapse
Affiliation(s)
- Amir Abbas Hamidi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Negin Taghehchian
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Basirat
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zangouei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Khorsandi K, Esfahani H, Abrahamse H. Characteristics of circRNA and its approach as diagnostic tool in melanoma. Expert Rev Mol Diagn 2021; 21:1079-1094. [PMID: 34380368 DOI: 10.1080/14737159.2021.1967749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
One of the most common types of cancer in the world is skin cancer, which has been divided into two groups: non-melanoma and melanoma skin cancer. Different external and internal agents are considered as risk factors for melanoma skin cancer pathogenesis but the exact mechanisms are not yet confirmed. Genetic and epigenetic changes, UV exposure, arsenic compounds, and chemical substances are contributory factors to the development of melanoma. A correlation has emerged between new therapies and the discovery of a basic molecular pattern for skin cancer patients. Circular RNAs (circRNAs) are described as a unique group of extensively expressed endogenous regulatory RNAs with closed-loop structure bonds connecting the 5' and 3' ends, which are commonly expressed in mammalian cells. In this review, we describe the biogenesis of circular RNAs and its function in cancerous conditions focusing on the crosstalk between different circRNAs and melanoma. Increasing evidence suggests that circRNAs appears to be relative to the origin and development of skin-related diseases like malignant melanoma. Different circular RNAs like hsa_circ_0025039, hsa_circRNA006612, circRNA005537, and circANRIL, by targeting different cellular and molecular targets (e.g., CDK4, DAB2IP, ZEB1, miR-889, and let-7 c-3p), can participate in melanoma cancer progression.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - HomaSadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Heidi Abrahamse
- Laser Research Centre, Nrf SARChI Chair: Laser Applications in Health, Faculty of Health Sciences, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
8
|
Augenlicht A, Saiselet M, Decaussin-Petrucci M, Andry G, Dumont JE, Maenhaut C. MiR-7-5p inhibits thyroid cell proliferation by targeting the EGFR/MAPK and IRS2/PI3K signaling pathways. Oncotarget 2021; 12:1587-1599. [PMID: 34381564 PMCID: PMC8351599 DOI: 10.18632/oncotarget.28030] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
The aberrant expression of miRNAs is often correlated to tumor development. MiR-7-5p is a recently discovered downregulated miRNA in thyroid papillary carcinoma (PTC). The goal of this project was to characterize its functional role in thyroid tumorigenesis and to identify the targeted modulated pathways. MiR-7-5p overexpression following transfection in TPC1 and HT-ori3 cells decreased proliferation of the two thyroid cell lines. Analysis of global transcriptome modifications showed that miR-7-5p inhibits thyroid cell proliferation by modulating the MAPK and PI3K signaling pathways which are both necessary for normal thyroid proliferation and play central roles in PTC tumorigenesis. Several effectors of these pathways are indeed targets of miR-7-5p, among which EGFR and IRS2, two upstream activators. We confirmed the upregulation of IRS2 and EGFR in human PTC and showed the existence of a negative correlation between the decreased expression of miR-7-5p and the increased expression of IRS2 or EGFR. Our results thus support a tumor-suppressor activity of miR-7-5p. The decreased expression of miR-7-5p during PTC tumorigenesis might give the cells a proliferative advantage and delivery of miR-7-5p may represent an innovative approach for therapy.
Collapse
Affiliation(s)
- Alice Augenlicht
- Institute of Interdisciplinary Research, Université libre de Bruxelles, Brussels, Belgium
| | - Manuel Saiselet
- Institute of Interdisciplinary Research, Université libre de Bruxelles, Brussels, Belgium
| | - Myriam Decaussin-Petrucci
- Service d'Anatomie et Cytologie Pathologiques, Centre Hospitalier Lyon Sud, Université Lyon 1, Pierre Benite Cedex 69495, France
| | - Guy Andry
- Surgery Department, J. Bordet Institute, Brussels 1000, Belgium
| | - Jacques E Dumont
- Institute of Interdisciplinary Research, Université libre de Bruxelles, Brussels, Belgium
| | - Carine Maenhaut
- Institute of Interdisciplinary Research, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
9
|
Liu S, Li Q, Ma Y, Corpe C, Wang J. Circular RNAs as novel potential biomarkers for pancreatic cancer. J Cancer 2021; 12:4604-4615. [PMID: 34149924 PMCID: PMC8210554 DOI: 10.7150/jca.58640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/19/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer (PaCa) is the fourth leading cause of cancer-related deaths in the United States, and the vast majority of these malignancies are pancreatic ductal adenocarcinomas (PDAC), but there is still a lack of early detection biomarkers for PaCa. Unlike linear RNAs, circRNAs form covalently closed continuous loops and can act as mammalian gene regulators. They may be diagnostic or predictive biomarkers for some tumors, also be novel potential therapeutic targets in different diseases. This review focuses on (1) the biogenesis of circRNAs, RNA binding proteins (RBPs) and complementary sequences of circRNAs; (2) the characteristics of circRNAs which allow them to interact with miRNAs; (3) the roles of circRNAs playing in the regulation of gene expression, cell behavior and cancer, and their potential role as novel biomarkers and therapeutic targets in pancreatic cancer.
Collapse
Affiliation(s)
- Shanshan Liu
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Qiuyue Li
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Yan Ma
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| | - Christopher Corpe
- King's College London, London, Nutritional Science Department, 150 Stamford street, waterloo, London, SE19NH, United Kingdom
| | - Jin Wang
- Shanghai Public Health Clinical Center, Fudan University, 2901 Caolang Road, Jinshan District, Shanghai 201508, China
| |
Collapse
|
10
|
Korać P, Antica M, Matulić M. MiR-7 in Cancer Development. Biomedicines 2021; 9:325. [PMID: 33806891 PMCID: PMC8004586 DOI: 10.3390/biomedicines9030325] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA involved in the regulation of specific mRNA translation. They participate in cellular signaling circuits and can act as oncogenes in tumor development, so-called oncomirs, as well as tumor suppressors. miR-7 is an ancient miRNA involved in the fine-tuning of several signaling pathways, acting mainly as tumor suppressor. Through downregulation of PI3K and MAPK pathways, its dominant role is the suppression of proliferation and survival, stimulation of apoptosis and inhibition of migration. Besides these functions, it has numerous additional roles in the differentiation process of different cell types, protection from stress and chromatin remodulation. One of the most investigated tissues is the brain, where its downregulation is linked with glioblastoma cell proliferation. Its deregulation is found also in other tumor types, such as in liver, lung and pancreas. In some types of lung and oral carcinoma, it can act as oncomir. miR-7 roles in cell fate determination and maintenance of cell homeostasis are still to be discovered, as well as the possibilities of its use as a specific biotherapeutic.
Collapse
Affiliation(s)
- Petra Korać
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| | - Mariastefania Antica
- Division of Molecular Biology, Rudjer Bosković Institute, Bijenička 54, 10000 Zagreb, Croatia;
| | - Maja Matulić
- Department of Biology, Division of Molecular Biology, Faculty of Science, University of Zagreb, Horvatovac 102, 10000 Zagreb, Croatia;
| |
Collapse
|
11
|
Ku GW, Kang Y, Yu SL, Park J, Park S, Jeong IB, Kang MW, Son JW, Kang J. LncRNA LINC00240 suppresses invasion and migration in non-small cell lung cancer by sponging miR-7-5p. BMC Cancer 2021; 21:44. [PMID: 33422052 PMCID: PMC7796488 DOI: 10.1186/s12885-020-07755-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background lncRNAs have important roles in regulating cancer biology. Accumulating evidence has established a link between the dysregulation of lncRNAs and microRNA in cancer progression. In previous studies, miR-7-5p has been found to be significantly down-regulated in mesenchymal-like lung cancer cell lines and directly regulated EGFR. In this work, we investigated the lncRNA partner of miR-7-5p in the progression of lung cancer. Methods We investigated the expression of miR-7-5p and the lncRNA after transfection with an miR-7-5p mimics using a microarray. The microarray results were validated using quantitative real time-polymerase Chain Reaction (qRT-PCR). The regulatory effects of lncRNA on miR-7-5p and its target were evaluated by changes in the expression of miR-7-5p after transfection with siRNAs for lncRNA and the synthesis of full-length lncRNA. The effect of miR-7-5p on lncRNA and the miRNA target was evaluated after transfection with miRNA mimic and inhibitor. The role of lncRNA in cancer progression was determined using invasion and migration assays. The level of lncRNA and EGFR in lung cancer and normal lung tissue was analyzed using TCGA data. Results We found that LINC00240 was downregulated in lung cancer cell line after miR-7-5p transfection with an miR-7-5p mimic. Further investigations revealed that the knockdown of LINC00240 induced the overexpression of miR-7-5p. The overexpression of miR-7-5p diminished cancer invasion and migration. The EGFR expression was down regulated after siRNA treatment for LINC00240. Silencing LINC00240 suppressed the invasion and migration of lung cancer cells, whereas LINC00240 overexpression exerted the opposite effect. The lower expression of LINC00240 in squamous lung cancer was analyzed using TCGA data. Conclusions Taken together, LINC00240 acted as a sponge for miR-7-5p and induced the overexpression of EGFR. LINC00240 may represent a potential target for the treatment of lung cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-020-07755-8.
Collapse
Affiliation(s)
- Gwan Woo Ku
- Department of Thoracic Surgery, Konyang University Hospital, Daejeon, 35365, Republic of Korea
| | - Yujin Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Seong-Lan Yu
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea
| | - Joonghoon Park
- Graduate School of International Agricultural Technology and Institute of GreenBio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea
| | - Sejin Park
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - In Beom Jeong
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea
| | - Min Woong Kang
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, 35015, Republic of Korea
| | - Ji Woong Son
- Department of Internal Medicine, Konyang University Hospital, Daejeon, Republic of Korea.
| | - Jaeku Kang
- Priority Research Center, Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea. .,Department of Pharmacology, College of Medicine, Konyang University, Daejeon, 35365, Republic of Korea.
| |
Collapse
|
12
|
Grzywa TM, Klicka K, Włodarski PK. Regulators at Every Step-How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020; 12:E3709. [PMID: 33321819 PMCID: PMC7763175 DOI: 10.3390/cancers12123709] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial-mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
Affiliation(s)
- Tomasz M. Grzywa
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Klaudia Klicka
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
- Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Paweł K. Włodarski
- Department of Methodology, Medical University of Warsaw, 02-091 Warsaw, Poland; (T.M.G.); (K.K.)
| |
Collapse
|
13
|
Regulators at Every Step—How microRNAs Drive Tumor Cell Invasiveness and Metastasis. Cancers (Basel) 2020. [DOI: 10.3390/cancers12123709
expr 991289423 + 939431153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Tumor cell invasiveness and metastasis are the main causes of mortality in cancer. Tumor progression is composed of many steps, including primary tumor growth, local invasion, intravasation, survival in the circulation, pre-metastatic niche formation, and metastasis. All these steps are strictly controlled by microRNAs (miRNAs), small non-coding RNA that regulate gene expression at the post-transcriptional level. miRNAs can act as oncomiRs that promote tumor cell invasion and metastasis or as tumor suppressor miRNAs that inhibit tumor progression. These miRNAs regulate the actin cytoskeleton, the expression of extracellular matrix (ECM) receptors including integrins and ECM-remodeling enzymes comprising matrix metalloproteinases (MMPs), and regulate epithelial–mesenchymal transition (EMT), hence modulating cell migration and invasiveness. Moreover, miRNAs regulate angiogenesis, the formation of a pre-metastatic niche, and metastasis. Thus, miRNAs are biomarkers of metastases as well as promising targets of therapy. In this review, we comprehensively describe the role of various miRNAs in tumor cell migration, invasion, and metastasis.
Collapse
|
14
|
Guo G, Li L, Song G, Wang J, Yan Y, Zhao Y. miR‑7/SP1/TP53BP1 axis may play a pivotal role in NSCLC radiosensitivity. Oncol Rep 2020; 44:2678-2690. [PMID: 33125142 PMCID: PMC7640372 DOI: 10.3892/or.2020.7824] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 09/04/2020] [Indexed: 12/19/2022] Open
Abstract
MicroRNA‑7 (miR‑7) has been identified as a tumor suppressor in non‑small cell lung cancer (NSCLC) and a radiosensitivity regulator. Numerous studies have revealed that specific protein 1 (SP1) plays a critical role in the tumorigenesis of various types of cancers and regulates radiosensitivity and tumor suppressor p53‑binding protein 1 (TP53BP1), which plays an essential role in DNA repair. However, it is not clear whether miR‑7 has a regulatory effect on SP1 and TP53BP1 in NSCLC. In the present study it was revealed that miR‑7 directly binds to the 3'UTR of SP1, thereby suppressing SP1 expression to regulate radiosensitivity. Overexpression of miR‑7 and SP1 and knockdown of miR‑7 and SP1 were performed using lentiviral transfection. Protein and mRNA abundance of SP1 and TP53BP1 were determined using western blotting and RT‑qPCR, respectively, while miR‑7 binding to SP1 was validated using a luciferase reporter assay. Biological function analysis indicated that miR‑7 negatively regulated SP1 and inhibited cell proliferation, migration, and invasion when combined with radiation. It was also revealed that the expression of TP53BP1 was positively regulated by SP1 or negatively regulated by miR‑7. In conclusion, SP1 was a target of miR‑7, and the decreased expression of SP1 resulting from miR‑7 overexpression in NSCLC was vital for improving radiosensitivity in NSCLC cells. Moreover, SP1 expression was detected in 95 paired NSCLC and adjacent normal tissues, and it was determined that SP1 was significantly upregulated in NSCLC tissues and that its upregulation was correlated with the degree of tissue differentiation. Thus, SP1 and/or miR‑7 may be potential molecular targets in NSCLC radiotherapy.
Collapse
Affiliation(s)
- Genyan Guo
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Lingling Li
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Guanchu Song
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| | - Jie Wang
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Radiation Oncology, Dalian Municipal Central Hospital, Dalian, Liaoning 116033, P.R. China
| | - Ying Yan
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
- Department of Radiation Oncology, The General Hospital of Northern Theater Command, Shenyang, Liaoning 110016, P.R. China
| | - Yuxia Zhao
- Department of Radiation Oncology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning 110032, P.R. China
| |
Collapse
|
15
|
Tabatabaeian H, Peiling Yang S, Tay Y. Non-Coding RNAs: Uncharted Mediators of Thyroid Cancer Pathogenesis. Cancers (Basel) 2020; 12:E3264. [PMID: 33158279 PMCID: PMC7694276 DOI: 10.3390/cancers12113264] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/24/2022] Open
Abstract
Thyroid cancer is the most prevalent malignancy of the endocrine system and the ninth most common cancer globally. Despite the advances in the management of thyroid cancer, there are critical issues with the diagnosis and treatment of thyroid cancer that result in the poor overall survival of undifferentiated and metastatic thyroid cancer patients. Recent studies have revealed the role of different non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) that are dysregulated during thyroid cancer development or the acquisition of resistance to therapeutics, and may play key roles in treatment failure and poor prognosis of the thyroid cancer patients. Here, we systematically review the emerging roles and molecular mechanisms of ncRNAs that regulate thyroid tumorigenesis and drug response. We then propose the potential clinical implications of ncRNAs as novel diagnostic and prognostic biomarkers for thyroid cancer.
Collapse
Affiliation(s)
- Hossein Tabatabaeian
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
| | - Samantha Peiling Yang
- Endocrinology Division, Department of Medicine, National University Hospital, Singapore 119228, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Yvonne Tay
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore;
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
16
|
Liu D, Li P, Wang X, Wang W. hsa-miR-195-5p inhibits cell proliferation of human thyroid carcinoma cells via modulation of p21/cyclin D1 axis. Transl Cancer Res 2020; 9:5190-5199. [PMID: 35117886 PMCID: PMC8799136 DOI: 10.21037/tcr-20-1083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022]
Abstract
Background Based on existing evidence, microRNAs (miRs) are gene regulators that undertake key functions in the oncogenesis and tumor progression of every single human malignant disease, such as thyroid carcinoma (TC). Previous clinical findings showed that expression of miR-195 is down-regulated in TC, which implies that miR-195 may be practically involved in TC pathogenesis. Nevertheless, the function of hsa-miR-195-5p in TC is still largely unclear. Herein, we detected the conceivable involvement of hsa-miR-195-5p in TC cell proliferation. Methods Real time PCR examination was performed to assess the expression level of hsa-miR-195-5p in TC cell lines TPC-1 and B-CPAP. TPC-1 cells were transfected with either hsa-miR-195-5p mimics or hsa-miR-195-5p inhibitor. After confirmation of transfection efficiency, the effect of hsa-miR-195-5p on proliferation and cell cycle of TPC-1 cells was assessed. The expression of cyclin D1 and p21 was simultaneously detected by western blotting. Moreover, targetScan 6.2 was used to predict hsa-miR-195-5p target genes. Subsequently, luciferase reporter was performed to examine whether there is a possible binding of hsa-miR-195-5p to 3’-UTR of cyclin D1 mRNA. Furthermore, cyclin D1 mRNA and protein levels were measured to check whether hsa-miR-195-5p exerts its function at the post-transcriptional level. In addition, to explore the function of cyclin D1 in TPC-1 cells overexpressing hsa-miR-195-5p, cyclin D1 siRNA was used to silence the expression of cyclin D1 in TPC-1 cells overexpressing hsa-miR-195-5p. Results We quantified the expression of hsa-miR-195-5p in TC cells and normal thyroid cells and found a remarkable decrease in hsa-miR-195-5p expression in TC cells. Over-expression of hsa-miR-195-5p obviously resulted in downgraded proliferation of TC cells. Moreover, hsa-miR-195-5p caused cell arrest at the GO/G1 phase. Further in silico analyses and the dual-luciferase reporter assay confirmed that 3’-UTR of cyclin D1 is a direct target of hsa-miR-195-5p. Western blot analysis uncovered that hsa-miR-195-5p over-expression led to decreased levels of cyclin D1 and p21. In mechanistic analyses, we found that silencing of cyclin D1 reversed the inhibitory effect of hsa-miR-195-5p on the proliferation of TC cells, which indicates that hsa-miR-195-5p suppresses TC cell proliferation by adversely regulating cyclin D1. Conclusions We concluded that hsa-miR-195-5p is a candidate tumor-suppressor miRNA in TC and that the hsa-miR-195-5p/p21/cyclin D1 pathway could be a potential therapeutic target for TC.
Collapse
Affiliation(s)
- Dexin Liu
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping Li
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Xiaodong Wang
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Wei Wang
- Department of Radiology, Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| |
Collapse
|
17
|
Bautista L, Knippler CM, Ringel MD. p21-Activated Kinases in Thyroid Cancer. Endocrinology 2020; 161:bqaa105. [PMID: 32609833 PMCID: PMC7417880 DOI: 10.1210/endocr/bqaa105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
The family of p21-activated kinases (PAKs) are oncogenic proteins that regulate critical cellular functions. PAKs play central signaling roles in the integrin/CDC42/Rho, ERK/MAPK, PI3K/AKT, NF-κB, and Wnt/β-catenin pathways, functioning both as kinases and scaffolds to regulate cell motility, mitosis and proliferation, cytoskeletal rearrangement, and other cellular activities. PAKs have been implicated in both the development and progression of a wide range of cancers, including breast cancer, pancreatic melanoma, thyroid cancer, and others. Here we will discuss the current knowledge on the structure and biological functions of both group I and group II PAKs, as well as the roles that PAKs play in oncogenesis and progression, with a focus on thyroid cancer and emerging data regarding BRAF/PAK signaling.
Collapse
Affiliation(s)
- Luis Bautista
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and Cancer Biology Program, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| | - Christina M Knippler
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and Cancer Biology Program, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
- Department of Hematology and Medical Oncology, Emory University and Winship Cancer Institute, Atlanta, Georgia
| | - Matthew D Ringel
- Division of Endocrinology, Diabetes, and Metabolism, Department of Internal Medicine, and Cancer Biology Program, The Ohio State University College of Medicine and Arthur G. James Comprehensive Cancer Center, Columbus, Ohio
| |
Collapse
|
18
|
Heydarzadeh S, Moshtaghie AA, Daneshpoor M, Hedayati M. Regulators of glucose uptake in thyroid cancer cell lines. Cell Commun Signal 2020; 18:83. [PMID: 32493394 PMCID: PMC7268348 DOI: 10.1186/s12964-020-00586-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Abstract Thyroid cancer is the most common sort of endocrine-related cancer with more prevalent in women and elderly individuals which has quickly widespread expansion in worldwide over the recent decades. Common features of malignant thyroid cells are to have accelerated metabolism and increased glucose uptake to optimize their energy supply which provides a fundamental advantage for growth. In tumor cells the retaining of required energy charge for cell survival is imperative, indeed glucose transporters are enable of promoting of this task. According to this relation it has been reported the upregulation of glucose transporters in various types of cancers. Human studies indicated that poor survival can be occurred following the high levels of GLUT1 expression in tumors. GLUT-1 and GLUT3 are the glucose transporters which seems to be mainly engaged with the oncogenesis of thyroid cancer and their expression in malignant tissues is much more than in the normal one. They are promising targets for the advancement of anticancer strategies. The lack of oncosuppressors have dominant effect on the membrane expression of GLUT1 and glucose uptake. Overexpression of hypoxia inducible factors have been additionally connected with distant metastasis in thyroid cancers which mediates transcriptional regulation of glycolytic genes including GLUT1 and GLUT3. Though the physiological role of the thyroid gland is well illustrated, but the metabolic regulations in thyroid cancer remain evasive. In this study we discuss proliferation pathways of the key regulators and signaling molecules such as PI3K-Akt, HIF-1, MicroRNA, PTEN, AMPK, BRAF, c-Myc, TSH, Iodide and p53 which includes in the regulation of GLUTs in thyroid cancer cells. Incidence of deregulations in cellular energetics and metabolism are the most serious signs of cancers. In conclusion, understanding the mechanisms of glucose transportation in normal and pathologic thyroid tissues is critically important and could provide significant insights in science of diagnosis and treatment of thyroid disease. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Moshtaghie
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran
| | - Maryam Daneshpoor
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Hallajzadeh J, Amirani E, Mirzaei H, Shafabakhsh R, Mirhashemi SM, Sharifi M, Yousefi B, Mansournia MA, Asemi Z. Circular RNAs: new genetic tools in melanoma. Biomark Med 2020; 14:563-571. [PMID: 32462914 DOI: 10.2217/bmm-2019-0567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. New technologies have resulted in major advances in the diagnosis and treatment of melanoma and other cancer types. Recently, some studies have investigated the role of circular RNAs (circRNAs) in different cancers. CircRNAs are a member of long noncoding RNA family mainly formed through back-splicing and have a closed-loop structure. These molecules affect several biological and oncogenic cascades in diverse ways via acting as microRNA sponge, interacting with RNA-binding proteins and acting as a transcription regulator. In this review, we made an insight into the impact of circRNA dysregulation in the melanoma tumorigenesis based on the presented evidences.
Collapse
Affiliation(s)
- Jamal Hallajzadeh
- Department of Biochemistry & Nutrition, Research Center for Evidence-Based Health Management, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Elaheh Amirani
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Rana Shafabakhsh
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyyed M Mirhashemi
- Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Mehran Sharifi
- Department of Hematology & Oncology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Bahman Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad A Mansournia
- Department of Epidemiology & Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry & Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
20
|
Wei Z, Chang K, Fan C, Zhang Y. MiR-26a/miR-26b represses tongue squamous cell carcinoma progression by targeting PAK1. Cancer Cell Int 2020; 20:82. [PMID: 32190006 PMCID: PMC7071636 DOI: 10.1186/s12935-020-1166-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background Tongue squamous cell carcinoma (TSCC) is the most common oral malignancy. Previous studies found that microRNA (miR)-26a and miR-26b were downregulated in TSCC tissues. The current study was designed to explore the effects of miR-26a/miR-26b on TSCC progression and the potential mechanism. Methods Expression of miR-26a, miR-26b and p21 Activated Kinase 1 (PAK1) in TSCC tissues and cell lines was detected by reverse transcription- quantitative polymerase chain reaction (RT-qPCR). Flow cytometry analysis was performed to examine cell cycle and apoptosis. Transwell assay was conducted to evaluate the migrated and invasive abilities of SCC4 and Cal27 cells. In addition, western blot assay was employed to analyze the protein level. Glucose assay kit and lactate assay kit were utilized to analyze glycolysis. Dual-luciferase reporter and RNA immunoprecipitation (RIP) assays were applied to explore the relationship between miR-26a/miR-26b and PAK1. Xenograft tumor model was constructed to explore the role of miR-26a/miR-26b in vivo. Results Both miR-26a and miR-26b were underexpressed, while PAK1 was highly enriched in TSCC. Overexpression of miR-26a and miR-26b inhibited TSCC cell cycle, migration invasion and glycolysis, while promoted cell apoptosis. Both miR-26a and miR-26b directly targeted and negatively regulated PAK1 expression. Introduction of PAK1 partially reversed miR-26a/miR-26b upregulation-mediated cellular behaviors in TSCC cells. Gain of miR-26a/miR-26b blocked TSCC tumor growth in vivo. Conclusion MiR-26a/miR-26b repressed TSCC progression via targeting PAK1 in vitro and in vivo, which enriched our understanding about TSCC development and provided new insights into the its treatment.
Collapse
Affiliation(s)
- Zhenxing Wei
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| | - Kunpeng Chang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| | - Chongsheng Fan
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| | - Yang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Luoyang Central Hospital Affiliated to Zhengzhou University, No. 288 Middle Zhongzhou Road, Xigong District, Luoyang, 471000 Henan China
| |
Collapse
|
21
|
Cai W, Zhang Y, Su Z. ciRS-7 targeting miR-135a-5p promotes neuropathic pain in CCI rats via inflammation and autophagy. Gene 2020; 736:144386. [PMID: 31978512 DOI: 10.1016/j.gene.2020.144386] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 01/01/2023]
Abstract
Neuropathic pain, caused by damage to the nerve system, is one of the most challenging diseases in the world. Moreover, the etiology remains unclear. Circular RNAs (circRNAs) have been revealed to participate in various biological progress, including neuropathic pain. However, the way circRNAs participate in the progress of neuropathic pain still needs further study. In this research, we established CCI rat models and measured the expression level of ciRS-7 in the spinal dorsal horn in the postoperative rats. The level of ciRS-7 was positively associated with the progress of neuropathic pain. Next, we test the expression of autophagy and inflammation in the CCI rats, and the results indicate that ciRS-7 associates with the progress of neuropathic pain partly by upregulated the expression level of autophagy and inflammation in the CCI rats. Furthermore, we found ciRS-7 regulates neuropathic pain progress by sponging to miR-135a-5p. In CCI rats, inhibiting miR-135a-5p decreases the level of autophagy and inflammation and alleviates neuropathic pain. We present this research that might provide a new insight for neuropathic pain study.
Collapse
Affiliation(s)
- Wei Cai
- Department of Orthopedics, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Yang Zhang
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China
| | - Zhen Su
- Department of Anesthesiology, The Affiliated Huai'an NO.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China.
| |
Collapse
|
22
|
Boufraqech M, Nilubol N. Multi-omics Signatures and Translational Potential to Improve Thyroid Cancer Patient Outcome. Cancers (Basel) 2019; 11:E1988. [PMID: 31835496 PMCID: PMC6966476 DOI: 10.3390/cancers11121988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Recent advances in high-throughput molecular and multi-omics technologies have improved our understanding of the molecular changes associated with thyroid cancer initiation and progression. The translation into clinical use based on molecular profiling of thyroid tumors has allowed a significant improvement in patient risk stratification and in the identification of targeted therapies, and thereby better personalized disease management and outcome. This review compiles the following: (1) the major molecular alterations of the genome, epigenome, transcriptome, proteome, and metabolome found in all subtypes of thyroid cancer, thus demonstrating the complexity of these tumors and (2) the great translational potential of multi-omics studies to improve patient outcome.
Collapse
Affiliation(s)
| | - Naris Nilubol
- Surgical Oncology Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20817, USA;
| |
Collapse
|
23
|
Wang Q, Li Z, Hu Y, Zheng W, Tang W, Zhai C, Gu Z, Tao J, Wang H. Circ-TFCP2L1 Promotes the Proliferation and Migration of Triple Negative Breast Cancer through Sponging miR-7 by Inhibiting PAK1. J Mammary Gland Biol Neoplasia 2019; 24:323-331. [PMID: 31776835 DOI: 10.1007/s10911-019-09440-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 11/07/2019] [Indexed: 12/11/2022] Open
Abstract
CircRNAs are essential factors that have been verified to regulate various forms of carcinogenesis. However, the role of circRNAs in triple negative breast cancer (TNBC) tumourigenesis is not well clarified. In this study, we explored the circRNA expression profiles and possible modulation mechanism of circRNAs on triple negative breast cancer tumourigenesis. We used three pairs of triple negative breast cancer tissues and adjacent noncancerous tissues to perform a human circRNA microarray for screening of circRNA expression patterns in TNBC. The results showed that circ-TFCP2L1 was significantly up-regulated in TNBC tissues and cells, tending to have a shorter disease-free survival of TNBC patients. In vitro loss-of-function experiments showed that knockdown of circ-TFCP2L1 significantly suppressed the proliferation and migration of TNBC cells. Moreover, the results showed that the proliferation and migration capabilities and PAK1 expression in TNBC cells treated with si-circ-TFCP2L1 + miR-7 mimics were significantly suppressed compared with the normal group. Therefore, circ-TFCP2L1 was identified as a sponge of miR-7 functionally targeting PAK1 and further promoting the proliferation and migration of TNBC cells. Taken together, the results from our study reveal a novel regulatory mechanism and offer novel insight into the role of circ-TFCP2L1 in progression of triple negative breast cancer.
Collapse
Affiliation(s)
- Qian Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhouxiao Li
- Department of Hand Surgery, Plastic Surgery and Aesthetic Surgery, Ludwig-Maximilians University, Munich, Germany
| | - Yun Hu
- Department of General Surgery, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Wubin Zheng
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Changyuan Zhai
- Department of General Surgery, Nanjing Pukou Hospital, Nanjing Medical University, Nanjing, China
| | - Zhutong Gu
- Department of General Surgery, Nanjing Pukou Hospital, Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Tao
- Department of General Surgery, Nanjing Pukou Hospital, Nanjing Medical University, Nanjing, China.
| | - Hanjin Wang
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
24
|
Liu L, Liu FB, Huang M, Xie K, Xie QS, Liu CH, Shen MJ, Huang Q. Circular RNA ciRS-7 promotes the proliferation and metastasis of pancreatic cancer by regulating miR-7-mediated EGFR/STAT3 signaling pathway. Hepatobiliary Pancreat Dis Int 2019; 18:580-586. [PMID: 30898507 DOI: 10.1016/j.hbpd.2019.03.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 03/01/2019] [Indexed: 02/05/2023]
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is the most deadly type of tumor, and its pathogenesis remains unknown. Circular RNAs (circRNAs) may be functional and bind to microRNAs and consequently, influence the activity of targeted mRNAs. Recent researches indicate that one circRNA, ciRS-7, acts as a sponge of miR-7 and thus, inhibits its activity. It is well known that miR-7 is a cancer suppressor in many cancers. However, the relationship between ciRS-7 and miR-7, and the role of ciRS-7 in PDAC, remains to be elucidated. METHODS miR-7 and ciRS-7 expression in 41 pairs of PDAC tumors and their paracancerous tissues were detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The relationships between their expression levels and clinicopathological features in PDAC tissues were assessed. The relationship between miR-7 and ciRS-7 was also assessed by Spearman's correlation. We also used cell lines to evaluate the role of ciRS-7 in cell line behavior. The ciRS-7 interfere RNA (siRNA) and its empty vector were transfected into PDAC cells. PDAC cells proliferation and invasion abilities were detected by MTT assay and invasion analysis. The expression of proteins was assessed by Western blotting. RESULTS ciRS-7 expression was significantly higher in PDAC tissues than paracancerous tissues (P = 0.002). However, miR-7 expression showed the opposite trend (P = 0.048). Moreover, ciRS-7 expression was inversely correlated with miR-7 in PDAC (rs = -0.353, P = 0.023). ciRS-7 expression was also significantly elevated in venous invasion (3.72 ± 2.93 vs. 2.14 ± 1.26; P = 0.028) and lymph node metastasis (4.19 ± 2.75 vs. 2.32 ± 1.90; P = 0.016) in PDAC patients. Furthermore, ciRS-7 knockdown suppressed cell proliferation and invasion of PDAC cells (P < 0.05), and the downregulation of ciRS-7 resulted in miR-7 overexpression and subsequent inhibition of epidermal growth factor receptor (EGFR) and signal transducer and activator of transcription 3 (STAT3). CONCLUSIONS Circular RNA ciRS-7 plays an oncogene role in PDAC, partly by targeting miR-7 and regulating the EGFR/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lei Liu
- Clinical Medical College, Shandong University, Jinan 250012, China; Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Fu-Bao Liu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Mei Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, China
| | - Kun Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Qing-Song Xie
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Chen-Hai Liu
- Department of General Surgery, Anhui Provincial Hospital, Hefei 230001, China
| | - Min-Jing Shen
- Department of General Surgery, Anhui Provincial Hospital, Hefei 230001, China
| | - Qiang Huang
- Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, Hefei 230001, China; Department of General Surgery, Anhui Provincial Hospital, Hefei 230001, China.
| |
Collapse
|
25
|
Wang ZL, Wang C, Liu W, Ai ZL. Emerging roles of the long non-coding RNA 01296/microRNA-143-3p/MSI2 axis in development of thyroid cancer. Biosci Rep 2019; 39:BSR20182376. [PMID: 31693087 PMCID: PMC6881211 DOI: 10.1042/bsr20182376] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 09/16/2019] [Accepted: 10/25/2019] [Indexed: 12/14/2022] Open
Abstract
Thyroid cancer (TC) is an endocrine malignancy with rising incidence. Long non-coding RNAs (lncRNAs) can serve as diagnostic and prognostic biomarkers for TC. Thus, we studied roles of LINC01296 in TC progression. Initially, the Gene Expression Omnibus (GEO) database was used to detect the differentially expressed genes in human TC samples and the potential mechanism. Expression of LINC01296 and miR-143-3p in TC tissues and cells was measured. The transfection of TC cells was conducted with si-LINC01296, si-Musashi 2 (MSI2), mimic or inhibitor of miR-143-3p to determine their effects on TC cell proliferation, migration, invasion, apoptosis and the AKT/STAT3 signaling pathway. Finally, in vivo assay was performed to verify role of miR-143-3p in tumorigenesis of TC cells in nude mice. LINC01296 was predicted to bind to miR-143-3p to modulate MSI2 expression, thus regulating the occurrence and development of TC. LINC01296 was up-regulated, while miR-143-3p was down-regulated in TC cells and tissues. LNC01296 specifically bound to miR-143-3p and MSI2 was a target of miR-143-3p. Besides, LINC01296 silencing or miR-143-3p overexpression inhibited migration, invasion, proliferation and advanced apoptosis of TC cells. Additionally, silenced LINC01296 or overexpressed miR-143-3p reduced phosphorylated STAT3/STAT3, phosphorylated AKT/AKT, B-cell lymphoma-2 (Bcl-2) and CyclinD1 levels but elevated BCL2-associated X (Bax), Cleaved Caspase3 and Caspase3 levels. Also, tumorigenesis of TC cells in nude mice was inhibited with the silencing of LINC01296. In summary, LINC01296/miR-143-3p/MSI2 axis regulated development of TC through the AKT/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Zheng-Lin Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Cong Wang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Wei Liu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| | - Zhi-Long Ai
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, P.R. China
| |
Collapse
|
26
|
LINC00460 promotes hepatocellular carcinoma development through sponging miR-485-5p to up-regulate PAK1. Biomed Pharmacother 2019; 118:109213. [PMID: 31376654 DOI: 10.1016/j.biopha.2019.109213] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
LncRNAs can function as significant regulators of tumor development. However, their roles in hepatocellular carcinoma (HCC) remain poorly investigated. LINC00460 has been identified in several cancers, which can act as an oncogene. In this study, we observed that LINC00460 was significantly up-regulated in HCC cells, which implied that LINC00460 was involved in HCC development. Then, LINC00460 was silenced in Hep3B and Huh-7 cells and we found that knockdown of LINC00460 greatly inhibited HCC cell proliferation. In addition, HCC cell apoptosis was induced and meanwhile, cell cycle progression was blocked by down-regulation of LINC00460 in vitro. Furthermore, we proved that Hep3B and Huh-7 cell migration and invasion capacity was repressed by decrease of LINC00460. Recently, a growing number of studies have indicated the correlation between lncRNAs and microRNAs. Currently, we displayed that miR-485-5p was greatly decreased in HCC cells and LINC00460 could sponge miR-485-5p to regulate HCC progression. The binding association between LINC00460 and miR-485-5p was confirmed using dual-luciferase reporter assay, RNA pulled down and RIP assay in our research. Subsequently, PAK1 was predicted as a downstream target of miR-485-5p and we demonstrated that miR-485-5p suppressed PAK1 levels in vitro. Finally, in vivo experiments were conducted to validate that knockdown of LINC00460 repressed HCC development through modulating miR-485-5p to increase PAK1. Taken these together, we indicated that LINC00460 promoted HCC progression through sponging miR-485-5p and up-regulating PAK1.
Collapse
|
27
|
Guo H, Zhang L. MicroRNA-30a suppresses papillary thyroid cancer cell proliferation, migration and invasion by directly targeting E2F7. Exp Ther Med 2019; 18:209-215. [PMID: 31258655 PMCID: PMC6566087 DOI: 10.3892/etm.2019.7532] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 02/05/2019] [Indexed: 01/23/2023] Open
Abstract
microRNA (miRNA/miR)-30a, a tumor-associated miRNA, has been implicated in the tumorigenesis and progression of different types of human cancer. Thyroid cancer is a common endocrine malignancy, of which papillary thyroid cancer (PTC) accounts for ~80-90% of all TC. However, the effect of miR-30a in PTC is yet to be fully elucidated. The TPC-1 human PTC cell line, as well as the normal human thyroid cell line (HT-ori3), were utilized in the current study. The PTC cell line was transfected with a miR-30a mimic. Subsequently, reverse transcription-quantitative polymerase chain reaction was performed to detect the expression of miR-30a and E2F transcription factor 7 (E2F7). Cell proliferation was assessed via a MTT assay and transwell migration and invasion assays were performed to detect the migration and invasion of PTC cells. A dual-luciferase reporter assay was also utilized to clarify the association between miR-30a and E2F7. The results of the current study revealed that miR-30a was significantly downregulated in TPC-1 cells compared with HT-ori3 cells and that the expression of E2F7 was significantly upregulated in PTC cells. The upregulation of miR-30a also inhibited the proliferation, migration and invasion of PTC cells. Furthermore, the luciferase assay revealed that miR-30a binds to the 3'-UTR of E2F7. Additionally, the overexpression of miR-30a decreased E2F7 levels in TPC-1 cells. These results indicate that miR-30a functions as a tumor suppressor in PTC by direct targeting E2F7 and that miR-30a may be a novel therapeutic target for patients with PTC.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Clinical Medicine, Fenyang College, Shanxi Medical University, Fenyang, Shanxi 032200, P.R. China
| | - Linyun Zhang
- Shanxi Fenyang Prison Hospital, Fenyang, Shanxi 032200, P.R. China
| |
Collapse
|
28
|
Liu X, Fu Q, Li S, Liang N, Li F, Li C, Sui C, Dionigi G, Sun H. LncRNA FOXD2-AS1 Functions as a Competing Endogenous RNA to Regulate TERT Expression by Sponging miR-7-5p in Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:207. [PMID: 31024447 PMCID: PMC6463795 DOI: 10.3389/fendo.2019.00207] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/14/2019] [Indexed: 12/19/2022] Open
Abstract
Long non-coding RNA FOXD2 Adjacent Opposite Strand RNA 1 (FOXD2-AS1) has been widely reported to be implicated in the progression and recurrence of several cancers. The clinical significance and functional role of FOXD2-AS1 in thyroid carcinoma remain unknown. FOXD2-AS1 expression was evaluated by analyzing thyroid cancer RNA sequencing dataset from The Cancer Genome Atlas (TCGA). In vitro and in vivo assays were performed to assess the biological roles of FOXD2-AS1 in thyroid cancer cells. Western blot, luciferase, immunoprecipitation (IP), and RNA immunoprecipitation (RIP) assays were used to identify the underlying miRNA and mRNA target mediating the biological roles of FOXD2-AS1 in thyroid cancer cells. FOXD2-AS1 was upregulated in thyroid carcinoma tissues and cells. High expression of FOXD2-AS1 significantly correlated with clinical stage, recurrence of thyroid carcinoma. Silencing FOXD2-AS1 inhibited cancer stem cell-like phenotypes and attenuates the anoikis resistance in vitro. Downregulating FOXD2-AS1 represses the tumorigenesis of thyroid carcinoma cells in vivo. FOXD2-AS1 acts as a competitive endogenous RNA (ceRNA) for miR-7-5p, up-regulating the expression of telomerase reverse transcriptase (TERT), which further promotes the cancer stem cells features and anoikis resistance in thyroid cancer cells. Our findings indicate that FOXD2-AS1 functions as an oncogenic regulator in the development of thyroid cancer, contributing to early recurrence of thyroid cancer.
Collapse
Affiliation(s)
- Xiaoli Liu
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Qingfeng Fu
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Shijie Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Nan Liang
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Fang Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Changlin Li
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chengqiu Sui
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Gianlorenzo Dionigi
- Division for Endocrine and Minimally Invasive Surgery, Department of Human Pathology in Adulthood and Childhood “G. Barresi”, University Hospital “G. Martino”, University of Messina, Messina, Italy
| | - Hui Sun
- Division of Thyroid Surgery, Jilin Provincial Key Laboratory of Surgical Translational Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Hui Sun
| |
Collapse
|
29
|
Ramírez-Moya J, Santisteban P. miRNA-Directed Regulation of the Main Signaling Pathways in Thyroid Cancer. Front Endocrinol (Lausanne) 2019; 10:430. [PMID: 31312183 PMCID: PMC6614345 DOI: 10.3389/fendo.2019.00430] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 06/14/2019] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, great strides have been made in the study of microRNAs in development and in diseases such as cancer, as reflected in the exponential increase in the number of reviews on this topic including those on undifferentiated and well-differentiated thyroid cancer. Nevertheless, few reviews have focused on understanding the functional significance of the most up- or down-regulated miRNAs in thyroid cancer for the main signaling pathways hyperactivated in this tumor type. The aim of this review is to discuss the major miRNAs targeting proteins of the MAPK, PI3K, and TGFβ pathways, to define their mechanisms of action through the 3'UTR regions of their target genes, and to describe how they affect thyroid tumorigenesis through their actions on cell proliferation, migration, and invasion. Given the importance of miRNAs in cancer as diagnostic, prognostic and therapeutic candidates, a better understanding of this cross-talk might shed new light on the biomedical treatment of thyroid cancer.
Collapse
Affiliation(s)
- Julia Ramírez-Moya
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Pilar Santisteban
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior Investigaciones Científicas and Universidad Autónoma de Madrid (CSIC-UAM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- *Correspondence: Pilar Santisteban
| |
Collapse
|
30
|
Ren L, Xu Y, Qin G, Liu C, Yan Y, Zhang H. miR-199b-5p-Stonin 2 axis regulates metastases and epithelial-to-mesenchymal transition of papillary thyroid carcinoma. IUBMB Life 2018; 71:28-40. [PMID: 30325582 DOI: 10.1002/iub.1889] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 05/22/2018] [Indexed: 01/06/2023]
Abstract
Papillary thyroid carcinoma is one of the most fatal malignant endocrine tumors, and the prognosis remains poor because of the lack of effective therapeutic targets. In this study, we demonstrated that the level of miR-199b-5p was markedly downregulated in papillary thyroid carcinoma. The ectopic expression level of miR-199b-5p in papillary thyroid carcinoma cell B-CPAP could inhibit growth, migration, and invasion as well as epithelial-mesenchymal transition (EMT) and decreased cell metastasis in vivo, but silencing miR-199b-5p caused a contradictory outcome. Additionally, Stonin 2 (STON2) was identified as a direct target gene of miR-199b-5p. Consistent with the downregulation of miR-199b-5p, the overexpression of STON2 induced the growth, migration and invasion of B-CPAP cells. It was also demonstrated that miR-199b-5p suppressed papillary thyroid carcinoma cell aggressiveness by targeting STON2. Furthermore, the overexpression of miR-199b-5p inhibited cell proliferation, promoted apoptosis, and increased the chemo-sensitivity of thyroid carcinoma B-CPAP cells toward the chemotherapy drug paclitaxel. Finally, in vivo experiments further demonstrated that miR-199b-5p suppressed tumor growth in nude mice. Thus, this study revealed that miR-199b-5p functions as antioncogene miRNA in papillary thyroid carcinoma cells and that the miR-199b-5p/STON2 axis might be a potential treatment option for papillary thyroid carcinoma. © 2018 IUBMB Life, 71(1):28-40, 2019.
Collapse
Affiliation(s)
- Lei Ren
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| | - Yapei Xu
- Department of Nephrology, the Third People's hospital of ZhengZhou, Zhengzhou, Henan, 450000, China
| | - Guijun Qin
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| | - Cong Liu
- Department of Endocrinology, ShengJing Hospital of China medical University, Shenyang, Liaoning, 110022, China
| | - Yushan Yan
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| | - Huijuan Zhang
- Department of Endocrinology, the First Affiliated Hospital of ZhengZhou University, Zhengzhou, Henan, 450002, China
| |
Collapse
|
31
|
Advances of circular RNAs in carcinoma. Biomed Pharmacother 2018; 107:59-71. [PMID: 30077838 DOI: 10.1016/j.biopha.2018.07.164] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/29/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Circular RNAs (circRNAs) are a type of non-coding RNAs with single-stranded closed structure. The rapid development of high-throughput sequencing technology has allowed for the widespread presence of circRNAs in transcriptomes. Moreover, increasing studies have identified a correlation between circRNAs and different cancers. In addition, most circRNAs are dysregulated in various cancers, and some of them have been reported be vital in the occurrence and development of tumors. For example, ciRS-7 plays a role in tumor promotion and circ-ITCH acts as a tumor suppressor. This review summarizes the latest progressions in the field regarding the functions of circRNAs in relation with cancers, and anticipates the emerging roles of circRNAs and future challenges in cancer research.
Collapse
|
32
|
He H, Dai J, Zhuo R, Zhao J, Wang H, Sun F, Zhu Y, Xu D. Study on the mechanism behind lncRNA MEG3 affecting clear cell renal cell carcinoma by regulating miR-7/RASL11B signaling. J Cell Physiol 2018; 233:9503-9515. [PMID: 29968912 DOI: 10.1002/jcp.26849] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 05/10/2018] [Indexed: 12/17/2022]
Abstract
The goal of this research was to study the relationships between maternally expressed gene 3 (MEG3), microRNA-7 (miR-7), and RASL11B, and explore their influence on the progression of clear cell renal cell carcinoma (CCRCC). Microarray analysis was conducted using the data provided by The Cancer Genome Atlas. The expression levels of MEG3 and miR-7 in CCRCC and adjacent tissue samples were ascertained by quantitative real-time polymerase chain reaction (qRT-PCR). The cell proliferation activity was unmasked by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and cell apoptosis and cell cycle were investigated by flow cytometry. A dual luciferase reporter assay was used to verify target relationships. Wound healing assay and transwell assay were used to detect cell migration and invasion ability. Decreased MEG3 expression was observed in CCRCC tissues and cells. Overexpression of MEG3 accelerated apoptosis; inhibited cell proliferation, migration and invasion; and induced G0/G1 phase cell cycle arrest in CCRCC. MiR-7, directly binding to MEG3, was overexpressed in the CCRCC tissues and could inhibit the apoptosis and promote the migration and invasion of CCRCC cells. RASL11B, lowly expressed in CCRCC, was a target of miR-7. After the overexpression of RASL11B, G0/G1 phase cell cycle arrest was induced; cell apoptosis was promoted; and the proliferation, invasion, and migration of CCRCC cells were inhibited. MEG3 could up-regulate RASL11B to inhibit the cell proliferation, invasion, and migration; induce G0/G1 cell cycle arrest; and promote cell apoptosis by suppressing miR-7 in CCRCC.
Collapse
Affiliation(s)
- Hongchao He
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jun Dai
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ran Zhuo
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juping Zhao
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haofei Wang
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fukang Sun
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu Zhu
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Danfeng Xu
- Department of Urology, Shanghai Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
33
|
Jahanbani I, Al-Abdallah A, Ali RH, Al-Brahim N, Mojiminiyi O. Discriminatory miRNAs for the Management of Papillary Thyroid Carcinoma and Noninvasive Follicular Thyroid Neoplasms with Papillary-Like Nuclear Features. Thyroid 2018; 28:319-327. [PMID: 29378472 DOI: 10.1089/thy.2017.0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Papillary thyroid carcinoma (PTC) variants have several overlapping clinical and pathological features. The World Health Organization recently published a new classification of thyroid tumors containing significant revisions. Encapsulated papillary thyroid carcinoma (EPTC) has been recognized as a distinctive variant of PTC. The noninvasive encapsulated follicular variant of PTC has been reclassified as noninvasive follicular thyroid neoplasms with papillary-like nuclear features (NIFTP). Different neoplasms are associated with different outcomes and require different clinical management. The objective of this study was to explore the miRNA expression patterns specific for classic PTC (cPTC), EPTC, follicular variant of PTC, and NIFTP in order to identify biomarkers of diagnostic and prognostic utility aiming for better clinical decisions. METHODS The expression of 84 miRNAs was determined by quantitative real-time polymerase chain reaction in 113 thyroid tissues of PTC (classic, encapsulated, and follicular), NIFTP, and hyperplasia lesions. Expression of the same miRNAs was tested in pre- and postoperative whole-blood samples. RESULTS Several miRNAs were differentially expressed in the different groups. Expression profile of miRNAs in the tissue was similarly reflected in the circulation. Receiver operating characteristic curve analysis showed that miR-7-5p, miR-222-3p, and miR-146b-5p can discriminate between the different groups with high sensitivity and specificity. Downregulation of miR-144-3p, miR-15a-5p, miR-20a-5p, miR-32-5p miR-142-5p, miR-143-3p, and miR-20b-5p is associated with aggressive behavior in cPTC. Circulating miR-146b-5p, miR-222-3p, miR-155-5p, and miR-378a-3p are potential diagnostic and follow up biomarkers for PTC. CONCLUSION Downregulation of miR-7-5p discriminates NIFTP from hyperplasia. Upregulation of miR-222-3p discriminates follicular variant of PTC from NIFTP. High levels of miR-146b-5p distinctively characterize cPTC. These miRNAs are useful biomarkers in the diagnosis of PTC and NIFTP, and help to avoid unnecessary thyroidectomy and improve clinical management.
Collapse
Affiliation(s)
- Iman Jahanbani
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Abeer Al-Abdallah
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Rola H Ali
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| | - Nabeel Al-Brahim
- 2 Department of Pathology, Farwaniya Hospital , Kuwait City, Kuwait
| | - Olusegun Mojiminiyi
- 1 Department of Pathology, Faculty of Medicine, Kuwait University , Safat, Kuwait
| |
Collapse
|
34
|
Mohamad Yusof A, Jamal R, Muhammad R, Abdullah Suhaimi SN, Mohamed Rose I, Saidin S, Ab Mutalib NS. Integrated Characterization of MicroRNA and mRNA Transcriptome in Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2018; 9:158. [PMID: 29713312 PMCID: PMC5911478 DOI: 10.3389/fendo.2018.00158] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 03/26/2018] [Indexed: 01/08/2023] Open
Abstract
The incidence rate of papillary thyroid carcinoma (PTC) has rapidly increased in the recent decades, and the microRNA (miRNA) is one of the potential biomarkers in this cancer. Despite good prognosis, certain features such as lymph node metastasis (LNM) and BRAF V600E mutation are associated with a poor outcome. More than 50% of PTC patients present with LNM and BRAF V600E is the most common mutation identified in this cancer. The molecular mechanisms underlying these features are yet to be elucidated. This study aims to elucidate miRNA-genes interaction networks in PTC with or without LNM and to determine the association of BRAF V600E mutation with miRNAs and genes expression profiles. Next generation sequencing was performed to characterize miRNA and gene expression profiles in 20 fresh frozen tumor and the normal adjacent tissues of PTC with LNM positive (PTC LNM-P) and PTC without LNM (PTC LNN). BRAF V600E was genotyped using Sanger sequencing. Bioinformatics integration and pathway analysis were performed to determine the regulatory networks involved. Based on network analysis, we then investigated the association between miRNA and gene biomarkers, and pathway enrichment analysis was performed to study the role of candidate biomarkers. We identified 138 and 43 significantly deregulated miRNAs (adjusted p value < 0.05; log2 fold change ≤ -1.0 or ≥1.0) in PTC LNM-P and PTC LNN compared to adjacent normal tissues, respectively. Ninety-six miRNAs had significant expression ratios of 3p-to-5p in PTC LNM-P as compared to PTC LNN. In addition, ribosomal RNA-reduced RNA sequencing analysis revealed 699 significantly deregulated genes in PTC LNM-P versus normal adjacent tissues, 1,362 genes in PTC LNN versus normal adjacent tissue, and 1,576 genes in PTC LNM-P versus PTC LNN. We provide the evidence of miRNA and gene interactions, which are involved in LNM of papillary thyroid cancer. These findings may lead to better understanding of carcinogenesis and metastasis processes. This study also complements the existing knowledge about deregulated miRNAs in papillary thyroid carcinoma development.
Collapse
Affiliation(s)
- Azliana Mohamad Yusof
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rahman Jamal
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Rohaizak Muhammad
- Department of Surgery, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Isa Mohamed Rose
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sazuita Saidin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul-Syakima Ab Mutalib
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
- *Correspondence: Nurul-Syakima Ab Mutalib,
| |
Collapse
|
35
|
Lima CR, Gomes CC, Santos MF. Role of microRNAs in endocrine cancer metastasis. Mol Cell Endocrinol 2017; 456:62-75. [PMID: 28322989 DOI: 10.1016/j.mce.2017.03.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 03/12/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022]
Abstract
The deregulation of transcription and processing of microRNAs (miRNAs), as well as their function, has been involved in the pathogenesis of several human diseases, including cancer. Despite advances in therapeutic approaches, cancer still represents one of the major health problems worldwide. Cancer metastasis is an aggravating factor in tumor progression, related to increased treatment complexity and a worse prognosis. After more than one decade of extensive studies of miRNAs, the fundamental role of these molecules in cancer progression and metastasis is beginning to be elucidated. Recent evidences have demonstrated a significant role of miRNAs on the metastatic cascade, acting either as pro-metastatic or anti-metastatic. They are involved in distinct steps of metastasis including epithelial-to-mesenchymal transition, migration/invasion, anoikis survival, and distant organ colonization. Studies on the roles of miRNAs in cancer have focused mainly on two fronts: the establishment of a miRNA signature for different tumors, which may aid in early diagnosis using these miRNAs as markers, and functional studies of specific miRNAs, determining their targets, function and regulation. Functional miRNA studies on endocrine cancers are still scarce and represent an important area of research, since some tumors, although not frequent, present a high mortality rate. Among the endocrine tumors, thyroid cancer is the most common and best studied. Several miRNAs show lowered expression in endocrine cancers (i.e. miR-200s, miR-126, miR-7, miR-29a, miR-30a, miR-137, miR-206, miR-101, miR-613, miR-539, miR-205, miR-9, miR-195), while others are commonly overexpressed (i.e. miR-21, miR-183, miR-31, miR-let7b, miR-584, miR-146b, miR-221, miR-222, miR-25, miR-595). Additionally, some miRNAs were found in serum exosomes (miR-151, miR-145, miR-31), potentially serving as diagnostic tools. In this review, we summarize studies concerning the discovery and functions of miRNAs and their regulatory roles in endocrine cancer metastasis, which may contribute for the finding of novel therapeutic targets. The review focus on miRNAs with at least some identified targets, with established functions and, if possible, upstream regulation.
Collapse
Affiliation(s)
- Cilene Rebouças Lima
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Cibele Crastequini Gomes
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| | - Marinilce Fagundes Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, Avenida Professor Lineu Prestes 1524, Prédio I, CEP 05508-000, São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Chen D, Pan D, Tang S, Tan Z, Zhang Y, Fu Y, Lü G, Huang Q. Administration of chlorogenic acid alleviates spinal cord injury via TLR4/NF‑κB and p38 signaling pathway anti‑inflammatory activity. Mol Med Rep 2017; 17:1340-1346. [PMID: 29115619 DOI: 10.3892/mmr.2017.7987] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 07/25/2017] [Indexed: 11/06/2022] Open
Abstract
Chlorogenic acid, as a secondary metabolite of plants, exhibits a variety of effects including free radical scavenging, antiseptic, anti‑inflammatory and anti‑viral, in addition to its ability to reduce blood glucose, protect the liver and act as an anti‑hyperlipidemic agent and cholagogue. The present study demonstrated that administration of chlorogenic acid alleviated spinal cord injury (SCI) via anti‑inflammatory activity mediated by nuclear factor (NF)‑κB and p38 signaling pathways. Wistar rats were used to structure a SCI model rat to explore the effects of administration of chlorogenic acid on SCI. The Basso, Beattie and Bresnahan test was executed for assessment of neuronal functional recovery and then spinal cord tissue wet/dry weight ratio was recorded. The present study demonstrated that chlorogenic acid increased SCI‑inhibition of BBB scores and decreased SCI‑induction of spinal cord wet/dry weight ratio in rats. In addition, chlorogenic acid suppressed SCI‑induced inflammatory activity, inducible nitric oxide synthase activity and cyclooxygenase‑2 protein expression in the SCI rat. Furthermore, chlorogenic acid suppressed Toll like receptor (TLR)‑4/myeloid differentiation primary response 88 (MyD88)/NF‑κB/IκB signaling pathways and downregulated p38 mitogen activated protein kinase protein expression in SCI rats. The findings suggest that administration of chlorogenic acid alleviates SCI via anti‑inflammatory activity mediated by TLR4/MyD88/NF‑κB and p38 signaling pathways.
Collapse
Affiliation(s)
- Dayong Chen
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Dan Pan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Shaolong Tang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Zhihong Tan
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yanan Zhang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Yunfeng Fu
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Guohua Lü
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| | - Qinghua Huang
- Department of Spine Surgery, The Central Hospital of Zhuzhou City, Zhuzhou, Hunan 412000, P.R. China
| |
Collapse
|
37
|
Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H, Kong D. Overexpression of Circular RNA ciRS-7 Abrogates the Tumor Suppressive Effect of miR-7 on Gastric Cancer via PTEN/PI3K/AKT Signaling Pathway. J Cell Biochem 2017; 119:440-446. [PMID: 28608528 DOI: 10.1002/jcb.26201] [Citation(s) in RCA: 221] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023]
Abstract
Gastric cancer (GC) has one of the highest mortality rates of malignancies globally. Currently, ciRS-7, a novel circular RNA, has emerged as a potential sponge for miR-7. However, few studies on ciRS-7 in GC have been performed. In this study, we investigated the clinical significance and function of ciRS-7 in GC. First, the expression levels of ciRS-7 in 102 primary GC tissues and the matched para-carcinoma tissues were evaluated and the clinical relevance was confirmed in an independent validation cohort (n = 154). Second, the effects of ciRS-7 on miR-7, PTEN, and PI3K were evaluated. Finally, the function of ciRS-7 in GC was analyzed with cell lines and nude mice. The expression of ciRS-7 was significantly upregulated in GC tissues compared with the matched para-carcinoma tissues (P = 0.0023), and the upregulation of ciRS-7 was linked to poor survival in the testing (P = 0.0143) and validation cohort (P = 0.0061). Multivariate survival analysis revealed that ciRS-7 was probably an independent risk factor of overall survival (P < 0.05). Furthermore, overexpression of ciRS-7 blocked the miR-7-induced tumor suppression in MGC-803 and HGC-27 cells and led to a more aggressive oncogenic phenotype, via antagonizing miR-7-mediated PTEN/PI3K/AKT pathway. ciRS-7 may act as a prospective prognostic biological marker and a promising therapeutic target for GC. J. Cell. Biochem. 119: 440-446, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Haiyan Pan
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province 523808, P.R. China
| | - Tao Li
- Department of Chemotherapy, The People's Hospital of GaoZhou, GaoZhou, Guangdong Province 523808, P.R. China
| | - Yugang Jiang
- Department of Gastrointestinal surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong Province, P.R. China
| | - Congcong Pan
- Research Institute of the Aged Care Industry, Guangdong Medical University, Guangdong, Guangdong Province 523808, P.R. China
| | - Yuanlin Ding
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province 523808, P.R. China
| | - Zhigang Huang
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province 523808, P.R. China
| | - Haibing Yu
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province 523808, P.R. China
| | - Danli Kong
- School of Public Health, Guangdong Medical University, Dongguan, Guangdong Province 523808, P.R. China
| |
Collapse
|
38
|
Feng S, Wang Y, Zhang R, Yang G, Liang Z, Wang Z, Zhang G. Curcumin exerts its antitumor activity through regulation of miR-7/Skp2/p21 in nasopharyngeal carcinoma cells. Onco Targets Ther 2017; 10:2377-2388. [PMID: 28496336 PMCID: PMC5422505 DOI: 10.2147/ott.s130055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Curcumin, a natural polyphenol compound, exhibits tumor suppressive activity in a wide spectrum of cancers, including nasopharyngeal carcinoma cells. However, the exact molecular mechanisms governing this tumor suppressive activity remain elusive. Multiple studies have revealed that miRNAs are critically involved in tumorigenesis, indicating that targeting miRNAs could be a therapeutic strategy for treating human cancer. In the current study, we set out to determine whether curcumin regulates miR-7 expression in nasopharyngeal carcinoma cells. We found that curcumin inhibited cell growth, induced apoptosis, retarded cell migration and invasion, and triggered cell cycle arrest in the human nasopharyngeal carcinoma cell lines CNE1 and CNE2. Importantly, we observed that curcumin upregulated the expression of miR-7 and subsequently inhibited Skp2, a direct miR-7 target. Our results identified that upregulation of miR-7 by curcumin could benefit nasopharyngeal carcinoma patients.
Collapse
Affiliation(s)
- Shaoyan Feng
- Department of Otorhinolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou.,Department of Otolaryngology, Head and Neck Surgery, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai
| | - Yu Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou
| | | | - Guangwei Yang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Zibin Liang
- Department of Radiation Oncology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Zhiwei Wang
- The Cyrus Tang Hematology Center and Collaborative Innovation Center of Hematology, Jiangsu Institute of Hematology, the First Affiliated Hospital, Soochow University, Suzhou
| | - Gehua Zhang
- Department of Otorhinolaryngology, Head and Neck Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou
| |
Collapse
|