1
|
Spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of biomimetic nanofiber-enabled bone tissue engineering. Biomaterials 2021; 276:121041. [PMID: 34343857 DOI: 10.1016/j.biomaterials.2021.121041] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
While extensive research has demonstrated an interdependent role of osteogenesis and angiogenesis in bone tissue engineering, little is known about how functional blood vessel networks are organized to initiate and facilitate bone tissue regeneration. Building upon the success of a biomimetic composite nanofibrous construct capable of supporting donor progenitor cell-dependent regeneration, we examined the angiogenic response and spatiotemporal blood vessel specification at the osteogenesis and angiogenesis interface of cranial bone defect repair utilizing high resolution multiphoton laser scanning microscopy (MPLSM) in conjunction with intravital imaging. We demonstrate here that the regenerative vasculature can be specified as arterial and venous capillary vessels based upon endothelial surface markers of CD31 and Endomucin (EMCN), with CD31+EMCN- vessels exhibiting higher flowrate and higher oxygen tension (pO2) than CD31+EMCN+ vessels. The donor osteoblast clusters are uniquely coupled to the sprouting CD31+EMCN+ vessels connecting to CD31+EMCN- vessels. Further analyses reveal differential vascular response and vessel type distribution in healing and non-healing defects, associated with changes of gene sets that control sprouting and morphogenesis of blood vessels. Collectively, our study highlights the key role of spatiotemporal vessel type distribution in bone tissue engineering, offering new insights for devising more effective vascularization strategies for bone tissue engineering.
Collapse
|
2
|
Gaur S, Agnihotri R. Application of Adipose Tissue Stem Cells in Regenerative Dentistry: A Systematic Review. J Int Soc Prev Community Dent 2021; 11:266-271. [PMID: 34268188 PMCID: PMC8257006 DOI: 10.4103/jispcd.jispcd_43_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/28/2021] [Accepted: 03/26/2021] [Indexed: 12/12/2022] Open
Abstract
AIM The aim of this study was to systematically review the applications of adipose tissue stem cells (ADSCs) in regenerative dentistry. MATERIALS AND METHODS An electronic search was conducted in Medline (PubMed) and Scopus databases. The original research associated with the role of ADSCs in regeneration of alveolar bone, periodontal ligament (PDL), cementum as well as the dental pulp was evaluated. Among the included studies, three animal studies and one human study had low risk of bias. RESULTS A total of 33 relevant studies were included in the review. The animal models, in vivo human, and in vitro studies revealed that ADSCs had a significant osteogenic differentiation potential. Besides, they had potential to differentiate into PDL, cementum, and dental pulp tissue. CONCLUSION The ADSCs may be specifically applied for bone tissue engineering in the management of alveolar bone defects, specifically in dental implants and periodontal disease. However, their role in regeneration of PDL, cementum, and dental pulp requires further investigations. Overall, their applications in regenerative dentistry needs further verification through human clinical trials.
Collapse
Affiliation(s)
- Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| | - Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, India
| |
Collapse
|
3
|
The Role of Semaphorins in Metabolic Disorders. Int J Mol Sci 2020; 21:ijms21165641. [PMID: 32781674 PMCID: PMC7460634 DOI: 10.3390/ijms21165641] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/15/2022] Open
Abstract
Semaphorins are a family originally identified as axonal guidance molecules. They are also involved in tumor growth, angiogenesis, immune regulation, as well as other biological and pathological processes. Recent studies have shown that semaphorins play a role in metabolic diseases including obesity, adipose inflammation, and diabetic complications, including diabetic retinopathy, diabetic nephropathy, diabetic neuropathy, diabetic wound healing, and diabetic osteoporosis. Evidence provides mechanistic insights regarding the role of semaphorins in metabolic diseases by regulating adipogenesis, hypothalamic melanocortin circuit, immune responses, and angiogenesis. In this review, we summarize recent progress regarding the role of semaphorins in obesity, adipose inflammation, and diabetic complications.
Collapse
|
4
|
Local Application of Semaphorin 3A Combined with Adipose-Derived Stem Cell Sheet and Anorganic Bovine Bone Granules Enhances Bone Regeneration in Type 2 Diabetes Mellitus Rats. Stem Cells Int 2019; 2019:2506463. [PMID: 31467560 PMCID: PMC6701320 DOI: 10.1155/2019/2506463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 07/08/2019] [Indexed: 01/06/2023] Open
Abstract
Bone tissue regeneration is considered to be the optimal solution for bone loss. However, diabetic patients have a greater risk of poor bone healing or bone grafting failure than nondiabetics. The purpose of this study was to investigate the influence of the complexes of an adipose-derived stem cell sheet (ASC sheet) and Bio-Oss® bone granules on bone healing in type 2 diabetes mellitus (T2DM) rats with the addition of semaphorin 3A (Sema3A). The rat ASC sheets showed stronger osteogenic ability than ASCs in vitro, as indicated by the extracellular matrix mineralization and the expression of osteogenesis-related genes at mRNA level. An ASC sheet combined with Bio-Oss® bone granules promoted bone formation in T2DM rats as indicated by microcomputed tomography (micro-CT) and histological analysis. In addition, Sema3A promoted the osteogenic differentiation of ASC sheets in vitro and local injection of Sema3A promoted T2DM rats' calvarial bone regeneration based on ASC sheet and Bio-Oss® bone granule complex treatment. In conclusion, the local injection of Sema3A and the complexes of ASC sheet and Bio-Oss® bone granules could promote osseous healing and are potentially useful to improve bone healing for T2DM patients.
Collapse
|
5
|
miR-145-5p suppresses osteogenic differentiation of adipose-derived stem cells by targeting semaphorin 3A. In Vitro Cell Dev Biol Anim 2019; 55:189-202. [DOI: 10.1007/s11626-019-00318-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/03/2019] [Indexed: 12/24/2022]
|
6
|
Kenan S, Onur ÖD, Solakoğlu S, Kotil T, Ramazanoğlu M, Çelik HH, Ocak M, Uzuner B, Fıratlı E. Investigation of the effects of semaphorin 3A on new bone formation in a rat calvarial defect model. J Craniomaxillofac Surg 2018; 47:473-483. [PMID: 30616935 DOI: 10.1016/j.jcms.2018.12.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 08/18/2018] [Accepted: 12/17/2018] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study investigates the effects of semaphorin 3A on new bone formation in an experimental rat model. MATERIALS AND METHODS Cortical bone defects, 5 mm, were created in the calvaria of 40 Wistar rats, which were then separated into three groups: empty defect (control) group, collagen group, collagen + semaphorin 3A group. The bone blocks were harvested after 4 and 8 weeks. New bone formation was assessed by micro-computed tomography (micro-CT), histology, histomorphometry, transmission electron microscope (TEM) and immunohistochemistry. RESULTS Increased bone formation was observed in collagen + semaphorin 3A groups both histologically and with micro-CT. In the histomorphometic analysis, the control group had significantly less bone formation compared to both the collagen and collagen + semaphorin 3A group at 4 weeks (p = 0.0001) and 8 weeks (p = 0.0001). The collagen group had significantly less bone formation compared to collagen + semaphorin 3A group both at 4 weeks (p = 0.002) and 8 weeks (p = 0.005). Immunohistochemical analysis revealed that semaphorin 3A inhibited receptor activator of nuclear factor-kB ligand (RANKL) expression and increased the expressions of osteoblastic bone markers at 4 weeks. In TEM analysis, the collagen + semaphorin 3A group had an increased proliferation and bone formation rate at 4 weeks, whereas bone quantity and maturation were enhanced at 8 weeks. CONCLUSION Locally applied semaphorin 3A increases callus formation at 4 weeks and bone formation at 8 weeks. Semaphorin 3A prevents bone resorption by inhibiting osteoclasts and increases bone formation by inducing osteoblasts.
Collapse
Affiliation(s)
- Sevinç Kenan
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. Hülya Koçak Berberoğlu), Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Özen Doğan Onur
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. Hülya Koçak Berberoğlu), Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Seyhun Solakoğlu
- Department of Histology and Embryology (Head: Prof. Dr. Seyhun Solakoğlu), Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Tuğba Kotil
- Department of Histology and Embryology (Head: Prof. Dr. Seyhun Solakoğlu), Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Mustafa Ramazanoğlu
- Department of Oral and Maxillofacial Surgery (Head: Prof. Dr. Hülya Koçak Berberoğlu), Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Hakan Hamdi Çelik
- Department of Anatomy (Head: Prof. Dr. M. Fevzi Sargon), Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Mert Ocak
- Department of Anatomy (Head: Prof. Dr. M. Fevzi Sargon), Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Bora Uzuner
- Department of Anatomy (Head: Prof. Dr. M. Fevzi Sargon), Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Erhan Fıratlı
- Department of Periodontology (Head: Prof. Dr. Serdar Çintan), Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Semaphorin 3A promotes osteogenic differentiation of BMSC from type 2 diabetes mellitus rats. J Mol Histol 2018; 49:369-376. [PMID: 29774455 DOI: 10.1007/s10735-018-9776-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Accepted: 05/10/2018] [Indexed: 02/05/2023]
Abstract
Bone regeneration is impaired in patients with type 2 diabetes mellitus (T2DM), which leads to non-healing after bone loss. The decreased osteogenic capacity of bone mesenchymal stem cells (BMSCs) might be a main reason. Sema3A, as a powerful protein promoting osteocyte differentiation, shows potential for bone regeneration treatment. BMSCs may be a therapeutic solution. In this study, we divided BMSCs from T2DM rats (BMSCs-D) and normal rats (BMSCs-N), identified their ability to differentiate into different cell types. Then we found decreased expression of Sema3A in BMSCs-D compared with BMSCs-N. Stimulating with Sema3A showed no influence in the proliferation or migration of BMSCs. However, Sema3A stimulation significantly increased the expression of osteogenic‑related genes, including type I collagen, alkaline phosphatase, Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein and osteocalcin. Besides, the osteogenic capacity of BMSCs was also increased by Sema3A stimulation. In conclusion, we proved that exogenous Sema3A stimulation might repair the osteogenic capacity of BMSCs-D, thus providing a new strategy for restoring the impaired bone regeneration ability for T2DM patients.
Collapse
|
8
|
Mediero A, Wilder T, Shah L, Cronstein BN. Adenosine A 2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis. FASEB J 2018; 32:3487-3501. [PMID: 29394106 DOI: 10.1096/fj.201700217r] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The axonal guidance proteins semaphorin (Sema)4D and Sema3A play important roles in communication between osteoclasts and osteoblasts. As stimulation of adenosine A2A receptors (A2AR) regulates both osteoclast and osteoblast function, we asked whether A2AR regulates both osteoclast and osteoblast expression of Semas. In vivo bone formation and Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1 protein expression were studied in a murine model of wear particle-induced osteolysis. Osteoclast/osteoblast differentiation were studied in vitro as the number of tartrate-resistant acid phosphatase+/Alizarin Red+ cells after challenge with CGS21680 (A2AR agonist, 1 µM) or ZM241385 (A2AR antagonist, 1 µM), with or without Sema4D or Sema3A (10 ng/ml). Sema3A/PlexinA1/Neuropilin-1, Sema4D/PlexinB1, and receptor activator of NF-κB ligand/osteoprotegerin (RANKL/OPG) expression was studied by RT-PCR and Western blot. β-Catenin activation and cytoskeleton changes were studied by fluorescence microscopy and Western blot. In mice with wear particles implanted over the calvaria, CGS21680 treatment increased bone formation in vivo, reduced Sema4D, and increased Sema3A expression compared with mice with wear particle-induced osteolysis treated with vehicle alone. During osteoclast differentiation, CGS21680 abrogated RANKL-induced Sema4D mRNA expression (1.3 ± 0.3- vs. 2.5 ± 0.1-fold change, P < 0.001, n = 4). PlexinA1, but not Neuropilin-1, mRNA was enhanced by CGS21680 treatment. CGS21680 enhanced Sema3A mRNA expression during osteoblast differentiation (8.7 ± 0.2-fold increase, P < 0.001, n = 4); PlexinB1 mRNA was increased 2-fold during osteoblast differentiation and was not altered by CGS21680. Similar changes were observed at the protein level. CGS21680 decreased RANKL, increased OPG, and increased total/nuclear β-catenin expression in osteoblasts. Sema4D increased Ras homolog gene family, member A phosphorylation and focal adhesion kinase activation in osteoclast precursors, and CGS21680 abrogated these effects. In summary, A2AR activation diminishes secretion of Sema4D by osteoclasts, inhibits Sema4D-mediated osteoclast activation, and enhances secretion of Sema3A by osteoblasts, increasing osteoblast differentiation and diminishing inflammatory osteolysis.-Mediero, A., Wilder, T., Shah, L., Cronstein, B. N. Adenosine A2A receptor (A2AR) stimulation modulates expression of semaphorins 4D and 3A, regulators of bone homeostasis.
Collapse
Affiliation(s)
- Aránzazu Mediero
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and.,Bone and Joint Research Unit, Instituto de Investigación Sanitaria de la Fundación Jiménez Díaz-Universidad Autónoma de Madrid, Madrid, Spain
| | - Tuere Wilder
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Lopa Shah
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| | - Bruce N Cronstein
- Division of Translational Medicine, Department of Medicine, New York University-Langone Medical Center, New York, New York, USA; and
| |
Collapse
|