1
|
Gakhar D, Joshi H, Makkar D, Taneja N, Arora A, Rakha A. Machine learning reveals the rules governing the efficacy of mesenchymal stromal cells in septic preclinical models. Stem Cell Res Ther 2024; 15:289. [PMID: 39256841 PMCID: PMC11389403 DOI: 10.1186/s13287-024-03873-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 08/01/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Mesenchymal Stromal Cells (MSCs) are the preferred candidates for therapeutics as they possess multi-directional differentiation potential, exhibit potent immunomodulatory activity, are anti-inflammatory, and can function like antimicrobials. These capabilities have therefore encouraged scientists to undertake numerous preclinical as well as a few clinical trials to access the translational potential of MSCs in disease therapeutics. In spite of these efforts, the efficacy of MSCs has not been consistent-as is reflected in the large variation in the values of outcome measures like survival rates. Survival rate is a resultant of complex cascading interactions that not only depends upon upstream experimental factors like dosage, time of infusion, type of transplant, etc.; but is also dictated, post-infusion, by intrinsic host specific attributes like inflammatory microniche including proinflammatory cytokines and alarmins released by the damaged host cells. These complex interdependencies make a researcher's task of designing MSC transfusion experiments challenging. METHODS In order to identify the rules and associated attributes that influence the final outcome (survival rates) of MSC transfusion experiments, we decided to apply machine learning techniques on manually curated data collected from available literature. As sepsis is a multi-faceted condition that involves highly dysregulated immune response, inflammatory environment and microbial invasion, sepsis can be an efficient model to verify the therapeutic effects of MSCs. We therefore decided to implement rule-based classification models on data obtained from studies involving interventions of MSCs in sepsis preclinical models. RESULTS The rules from the generated graph models indicated that survival rates, post-MSC-infusion, are influenced by factors like source, dosage, time of infusion, pre-Interleukin-6 (IL-6)/ Tumour Necrosis Factor- alpha (TNF-α levels, etc. CONCLUSION: This approach provides important information for optimization of MSCs based treatment strategies that may help the researchers design their experiments.
Collapse
Affiliation(s)
- Diksha Gakhar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Himanshu Joshi
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Diksha Makkar
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Neelam Taneja
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India
| | - Amit Arora
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| | - Aruna Rakha
- Department of Translational and Regenerative Medicine, Post Graduate Institute of Medical Education and Research, Sector 12, Chandigarh, India.
| |
Collapse
|
2
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Doherty DF, Silva JD, Tandel SM, Su Y, Butler D, Ingram RJ, O'Kane CM. Human mesenchymal stromal cells inhibit Mycobacterium avium replication in clinically relevant models of lung infection. Thorax 2024; 79:778-787. [PMID: 38508718 PMCID: PMC11287638 DOI: 10.1136/thorax-2023-220819] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024]
Abstract
INTRODUCTION Novel therapeutic strategies are urgently needed for Mycobacterium avium complex pulmonary disease (MAC-PD). Human mesenchymal stromal cells (MSCs) can directly inhibit MAC growth, but their effect on intracellular bacilli is unknown. We investigated the ability of human MSCs to reduce bacterial replication and inflammation in MAC-infected macrophages and in a murine model of MAC-PD. METHODS Human monocyte-derived macrophages (MDMs) were infected with M. avium Chester strain and treated with human bone marrow-derived MSCs. Intracellular and extracellular colony-forming units (CFUs) were counted at 72 hours. Six-week-old female balb/c mice were infected by nebulisation of M. avium Chester. Mice were treated with 1×106 intravenous human MSCs or saline control at 21 and 28 days post-infection. Lungs, liver and spleen were harvested 42 days post-infection for bacterial counts. Cytokines were quantified by ELISA. RESULTS MSCs reduced intracellular bacteria in MDMs over 72 hours (median 35% reduction, p=0.027). MSC treatment increased extracellular concentrations of prostaglandin E2 (PGE2) (median 10.1-fold rise, p=0.002) and reduced tumour necrosis factor-α (median 28% reduction, p=0.025). Blocking MSC PGE2 production by cyclo-oxygenase-2 (COX-2) inhibition with celecoxib abrogated the antimicrobial effect, while this was restored by adding exogenous PGE2. MSC-treated mice had lower pulmonary CFUs (median 18% reduction, p=0.012), but no significant change in spleen or liver CFUs compared with controls. CONCLUSION MSCs can modulate inflammation and reduce intracellular M. avium growth in human macrophages via COX-2/PGE2 signalling and inhibit pulmonary bacterial replication in a murine model of chronic MAC-PD.
Collapse
Affiliation(s)
- Timothy D Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | | | - Gunnar N Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Declan F Doherty
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Johnatas Dutra Silva
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Shikha M Tandel
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - David Butler
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
3
|
Shuster-Hyman H, Siddiqui F, Gallagher D, Gauthier-Fisher A, Librach CL. Time course and mechanistic analysis of human umbilical cord perivascular cell mitigation of lipopolysaccharide-induced systemic and neurological inflammation. Cytotherapy 2023; 25:125-137. [PMID: 36473795 DOI: 10.1016/j.jcyt.2022.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 10/11/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND AIMS Because of their potent immunomodulatory and anti-inflammatory properties, mesenchymal stromal cells are a major focus in the field of stem cell therapy. However, the precise mechanisms underlying this are not entirely understood. Human umbilical cord perivascular cells (HUCPVCs) are a promising cell therapy candidate. This study was designed to evaluate the time course and mechanisms by which HUCPVCs mitigate lipopolysaccharide (LPS)-induced systemic and neurological inflammation in immunocompetent mice. To explore the underlying mechanisms, the authors investigated the biodistribution and fate of HUCPVCs. METHODS Male C57BL/6 mice were randomly allocated to four groups: control, LPS, HUCPVCs or LPS + HUCPVCs. Quantitative polymerase chain reaction, enzyme-linked immunosorbent assay and cytokine arrays were used to assess changes in pro-inflammatory mediators systemically and in the brain. Depressive-like behavioral changes were evaluated via a forced swim test. Quantum dot (qDot) labeling and immunohistochemistry were used to assess the biodistribution and fate of HUCPVCs and interactions with recipient innate immune cells. RESULTS A single intravenously delivered dose of HUCPVCs significantly reduced the systemic inflammation induced by LPS within the first 24 h after administration. HUCPVC treatment abrogated the upregulated expression of pro-inflammatory genes in the hippocampus and cortex and attenuated depressive-like behavior induced by LPS treatment. Biodistribution analysis revealed that HUCPVC-derived qDots rapidly accumulated in the lungs and demonstrated limited in vivo persistence. Furthermore, qDot signals were associated with major recipient innate immune cells and promoted a shift in macrophages toward a regulatory phenotype in the lungs. CONCLUSIONS Overall, this study demonstrates that HUCPVCs can successfully reduce systemic and neurological inflammation induced by LPS within the first 24 h after administration. Biodistribution and fate analyses suggest a critical role for the innate immune system in the HUCPVC-based immunomodulation mechanism.
Collapse
Affiliation(s)
- Hannah Shuster-Hyman
- CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | - Clifford L Librach
- CReATe Fertility Center, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Ge L, Zhao J, Deng H, Chen C, Hu Z, Zeng L. Effect of Bone Marrow Mesenchymal Stromal Cell Therapies in Rodent Models of Sepsis: A Meta-Analysis. Front Immunol 2022; 12:792098. [PMID: 35046951 PMCID: PMC8761857 DOI: 10.3389/fimmu.2021.792098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/08/2021] [Indexed: 12/09/2022] Open
Abstract
Background Multiple preclinical studies have demonstrated that bone‐marrow derived mesenchymal stromal (stem) cells [MSC(M)] positively influence the severity of sepsis symptoms and mortality in rodent models. However, this remains an inconclusive finding. Objective To review the effect of naïve MSC(M) in rodent models of sepsis. Methods The PubMed, EMBASE, and Web of Science databases were searched up to August 31, 2021. Inclusion criteria according to PICOS criteria were as follows: (1) population: rodents; (2) intervention: unmodified MSC(M); (3) comparison: not specified; (4) primary outcome: the effects of MSC(M) cell therapy on the mortality of rodent models of sepsis and endotoxemia; (5) study: experimental studies. Multiple prespecified subgroup and meta-regression analysis were conducted. Following quality assessment, random effects models were used for this meta-analysis.The inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results twenty-four animal studies met the inclusion criteria. Our results revealed an overall OR difference between animals treated with naïve MSC(M) and controls for mortality rate was 0.34(95% confidence interval: 0.27-0.44; P < 0.0001). Significant heterogeneity among studies was observed. Conclusions The findings of this meta-analysis suggest that naïve MSC(M) therapy decreased mortality in rodent models of sepsis. Additionally, we identified several key knowledge gaps, including the lack of large animal studies and uncertainty regarding the optimal dose of MSC(M) transplantation in sepsis. Before MSC(M) treatment can advance to clinical trials, these knowledge gaps must be addressed.
Collapse
Affiliation(s)
- Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Provincical Key Laboratory of Neurorestoratology, The Second Affiliated Hospital, Hunan Normal University, Changsha, China
| | - Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiyin Deng
- Department of Anesthesiology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
5
|
Shaw TD, Krasnodembskaya AD, Schroeder GN, Zumla A, Maeurer M, O’Kane CM. Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 PMCID: PMC8510528 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
Affiliation(s)
- Timothy D. Shaw
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Anna D. Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Gunnar N. Schroeder
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| | - Alimuddin Zumla
- Center for Clinical Microbiology, Division of Infection and Immunity, University College London, NIHR Biomedical Research Centre, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Markus Maeurer
- Immunosurgery Unit, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Department of Oncology and Haematology, Krankenhaus Nordwest, Frankfurt, Germany
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, Belfast, United Kingdom
| |
Collapse
|
6
|
Pei Y, Xie S, Li J, Jia B. Bone marrow-mesenchymal stem cell-derived exosomal microRNA-141 targets PTEN and activates β-catenin to alleviate myocardial injury in septic mice. Immunopharmacol Immunotoxicol 2021; 43:584-593. [PMID: 34308733 DOI: 10.1080/08923973.2021.1955920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) and their derived exosomes have shown potentials in the control of myocardial dysfunction. This study aimed to reveal the function of bone marrow (BM)-MSC-derived exosomes in sepsis-induced myocardial injury and the molecular mechanism. METHODS BM-MSC-derived exosomes were obtained and identified. A mouse model with sepsis was induced by cecalligation puncture (CLP) and treated with exosomes. The myocardial function of mice, the production of creatine kinase MB (CK-MB) and lactate dehydrogenase (LDH) in serum, the phosphorylation of a key myocardial contractility-related protein phospholamban (PLB), and the pathological changes in the myocardial tissues were examined. A microRNA (miRNA) microarray analysis was performed to examine the candidate miRNAs carried by the exosomes. Rescue experiments were conducted to validate the involvement of miR-141. RESULTS CLP treatment led to sepsis and notably reduced the myocardial function in mice. Further treatment of BM-MSC-derived exosomes alleviated the CLP-induced myocardial impairment, production of CK-MB and LDH, and inflammatory infiltration and cell apoptosis in mouse myocardial tissues, and restored the PLB phosphorylation. miR-141 was the most upregulated miRNA in the myocardial tissues after exosome treatment. Downregulation of miR-141 blocked the myocardium-protective functions of the exosomes. miR-141 was found to bind to and suppress PTEN expression, which further enhanced the activity of β-catenin. CONCLUSION This study suggested that BM-MSC derived exosomes ameliorates myocardial injury in septic mice through conveying miRNA-141 and regulating the PTEN/β-catenin axis, and exosomes may serve as promising tools for the management of myocardial injury induced by sepsis or other factors.
Collapse
Affiliation(s)
- Yongju Pei
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Shutang Xie
- Department of Respiratory Intensive Care Unit, Henan Provincial People's Hospital, Zhengzhou, P.R. China.,Department of Respiratory Intensive Care Unit, People's Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Jiang Li
- Zhengzhou Railway Vocational and Technical College, Zhengzhou, P.R. China.,Henan Provincial Engineering Research Center of Natural Drug Extraction and Medical Technology Application, Zhengzhou, P.R. China
| | - Baohui Jia
- Department of Central ICU, ZhengZhou Central Hospital, Zhengzhou, P.R. China
| |
Collapse
|
7
|
Dzobo K. Recent Trends in Multipotent Human Mesenchymal Stem/Stromal Cells: Learning from History and Advancing Clinical Applications. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:342-357. [PMID: 34115524 DOI: 10.1089/omi.2021.0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Early cell biology reports demonstrated the presence of cells with stem-like properties in bone marrow, with both hematopoietic and mesenchymal lineages. Over the years, various investigations have purified and characterized mesenchymal stromal/stem cells (MSCs) from different human tissues as cells with multilineage differentiation potential under the appropriate conditions. Due to their appealing characteristics and versatile potentials, MSCs are leveraged in many applications in medicine such as oncology, bioprinting, and as recent as therapeutics discovery and innovation for COVID-19. To date, studies indicate that MSCs have varied differentiation capabilities into different cell types, and demonstrate immunomodulating and anti-inflammatory properties. Different microenvironments or niche for MSCs and their resulting heterogeneity may influence attendant cellular behavior and differentiation capacity. The potential clinical applications of MSCs and exosomes derived from these cells have led to an avalanche of research reports on their properties and hundreds of clinical trials being undertaken. There is ample reason to think, as discussed in this expert review that the future looks bright and promising for MSC research, with many clinical trials under way to ascertain their clinical utility. This review provides a synthesis of the latest advances and trends in MSC research to allow for broad and critically informed use of MSCs. Early observations of the presence of these cells in the bone marrow and their remarkable differentiation capabilities and immunomodulation are also presented.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Center for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
8
|
The role of mesenchymal stem/stromal cells in the acute clinical setting. Am J Emerg Med 2020; 46:572-578. [PMID: 33279332 DOI: 10.1016/j.ajem.2020.11.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/09/2020] [Accepted: 11/15/2020] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Accumulating evidence supports the use of mesenchymal stem/stromal cells (MSCs), particularly bone marrow derived, as a safe and promising biologic therapy for promoting tissue repair and regeneration in various chronic diseases and disorders. Despite growing evidence that MSCs are potent anti-inflammatory mediators that can provide substantial benefits in acute organ injury, there are limited clinical trials utilizing MSCs in acute care settings, such as in the emergency department (ED) or intensive care unit (ICU). OBJECTIVE This article reviews the current state of MSC-based therapeutics and further explores the untapped potential role to treat various acute, life-threating injuries in the ED and ICU. DISCUSSION All clinical trials using MSCs in acute myocardial infarction (AMI), acute respiratory distress syndrome (ARDS), sepsis and acute kidney injury (AKI) demonstrated safety. While some also demonstrate clinical efficacy, efficacy data is inconsistent, with some studies limited by sample size, cell integrity and different dosages, necessitating further studies. CONCLUSION MSCs are potentially promising novel biologic therapeutics for clinical application in AMI, ARDS, sepsis, AKI and COVID-19 that have demonstrated safety in all clinical trials. More rigorous clinical trials are necessary and warranted to determine the efficacy of MSCs as a novel therapeutic in an acute setting, such as the ED.
Collapse
|
9
|
Ramos TD, Silva JD, da Fonseca-Martins AM, da Silveira Pratti JE, Firmino-Cruz L, Maciel-Oliveira D, Dos-Santos JS, Tenorio JIN, de Araujo AF, Freire-de-Lima CG, Diaz BL, Cruz FF, Rocco PRM, de Matos Guedes HL. Combined therapy with adipose tissue-derived mesenchymal stromal cells and meglumine antimoniate controls lesion development and parasite load in murine cutaneous leishmaniasis caused by Leishmania amazonensis. Stem Cell Res Ther 2020; 11:374. [PMID: 32867857 PMCID: PMC7457509 DOI: 10.1186/s13287-020-01889-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background Leishmaniasis is a neglected disease caused by Leishmania spp. One of its characteristics is an imbalance of host immune responses to foster parasite survival. In this setting, mesenchymal stromal cells (MSCs) may be a viable therapeutic alternative, given their well-established immunomodulatory potential. In this study, we compared the effects of therapy with bone marrow (BM)- and adipose tissue (AD)-derived MSCs in leishmaniasis caused by Leishmania amazonensis in C57BL/6 mice. After determining the most effective MSC source, we then combined these cells with meglumine antimoniate (a pentavalent antimonial commonly used for the treatment of leishmaniasis) to treat the infected mice. Methods In vitro, co-culture of AD-MSCs and BM-MSCs with Leishmania amazonensis-infected macrophages was performed to understand the influence of both MSC sources in infected cells. In vivo, infected C57BL/6 mice were treated with phosphate-buffered saline (PBS), AD-MSCs and BM-MSCs, and then meglumine antimoniate was combined with MSCs from the most effective source. Results In vitro, co-culture of Leishmania amazonensis-infected macrophages with BM-MSCs, compared to AD-MSCs, led to a higher parasite load and lower production of nitric oxide. Fibroblasts grown in conditioned medium from co-cultures with AD-MSCs promoted faster wound healing. Despite a non-significant difference in the production of vascular endothelial growth factor, we observed higher production of tumor necrosis factor-α and interleukin (IL)-10 in the co-culture with AD-MSCs. In vivo, treatment of infected mice with BM-MSCs did not lead to disease control; however, the use of AD-MSCs was associated with partial control of lesion development, without significant differences in the parasite load. AD-MSCs combined with meglumine antimoniate reduced lesion size and parasite load when compared to PBS and AD-MSC groups. At the infection site, we detected a small production of IL-10, but we were unable to detect production of either IL-4 or interferon-γ, indicating resolution of infection without effect on the percentage of regulatory T cells. Conclusion Combination treatment of cutaneous leishmaniasis with AD-MSCs and meglumine antimoniate may be a viable alternative.
Collapse
Affiliation(s)
- Tadeu Diniz Ramos
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Alessandra Marcia da Fonseca-Martins
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Juliana Elena da Silveira Pratti
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Luan Firmino-Cruz
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Diogo Maciel-Oliveira
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Julio Souza Dos-Santos
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - João Ivo Nunes Tenorio
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Almair Ferreira de Araujo
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Célio Geraldo Freire-de-Lima
- Laboratório de Imunomodulação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Bruno Lourenço Diaz
- Laboratório de Inflamação, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Fernanda Ferreira Cruz
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratório de Investigação Pulmonar, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Herbert Leonel de Matos Guedes
- Grupo de Imunologia e Vacinologia, Laboratório de Imunofarmacologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil. .,UFRJ Campus Duque de Caxias Professor Geraldo Cidade, Duque de Caxias, Rio de Janeiro, Brazil. .,Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz/FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Sato Y, Ochiai D, Abe Y, Masuda H, Fukutake M, Ikenoue S, Kasuga Y, Shimoda M, Kanai Y, Tanaka M. Prophylactic therapy with human amniotic fluid stem cells improved survival in a rat model of lipopolysaccharide-induced neonatal sepsis through immunomodulation via aggregates with peritoneal macrophages. Stem Cell Res Ther 2020; 11:300. [PMID: 32690106 PMCID: PMC7370504 DOI: 10.1186/s13287-020-01809-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/06/2020] [Accepted: 07/03/2020] [Indexed: 01/15/2023] Open
Abstract
Background Despite recent advances in neonatal care, sepsis remains a leading cause of mortality in neonates. Mesenchymal stem cells derived from various tissues, such as bone marrow, umbilical cord, and adipose tissue, have beneficial effects on adult sepsis. Although human amniotic fluid stem cells (hAFSCs) have mesenchymal stem cell properties, the efficacy of hAFSCs on neonatal sepsis is yet to be elucidated. This study aimed to investigate the therapeutic potential of hAFSCs on neonatal sepsis using a rat model of lipopolysaccharide (LPS)-induced sepsis. Methods hAFSCs were isolated as CD117-positive cells from human amniotic fluid. Three-day-old rat pups were intraperitoneally treated with LPS to mimic neonatal sepsis. hAFSCs were administered either 3 h before or at 0, 3, or 24 h after LPS exposure. Serum inflammatory cytokine levels, gene expression profiles from spleens, and multiple organ damage were analyzed. hAFSC localization was determined in vivo. In vitro LPS stimulation tests were performed using neonatal rat peritoneal macrophages co-cultured with hAFSCs in a cell-cell contact-dependent/independent manner. Immunoregulation in the spleen was determined using a DNA microarray analysis. Results Prophylactic therapy with hAFSCs improved survival in the LPS-treated rats while the hAFSCs transplantation after LPS exposure did not elicit a therapeutic response. Therefore, hAFSC pretreatment was used for all subsequent studies. Inflammatory cytokine levels were elevated after LPS injection, which was attenuated by hAFSC pretreatment. Subsequently, inflammation-induced damages in the brain, lungs, and liver were ameliorated. hAFSCs aggregated with peritoneal macrophages and/or transiently accumulated in the liver, mesentery, and peritoneum. Paracrine factors released by hAFSCs induced M1-M2 macrophage polarization in a cell-cell contact-independent manner. Direct contact between hAFSCs and peritoneal macrophages further enhanced the polarization. Microarray analysis of the spleen showed that hAFSC pretreatment reduced the expression of genes involved in apoptosis and inflammation and subsequently suppressed toll-like receptor 4 signaling pathways. Conclusions Prophylactic therapy with hAFSCs improved survival in a rat model of LPS-induced neonatal sepsis. These effects might be mediated by a phenotypic switch from M1 to M2 in peritoneal macrophages, triggered by hAFSCs in a cell-cell contact-dependent/independent manner and the subsequent immunomodulation of the spleen.
Collapse
Affiliation(s)
- Yu Sato
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Daigo Ochiai
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan.
| | - Yushi Abe
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Hirotaka Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Marie Fukutake
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Satoru Ikenoue
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Yoshifumi Kasuga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| | - Masayuki Shimoda
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Yae Kanai
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Mamoru Tanaka
- Department of Obstetrics and Gynecology, Keio University School of Medicine, 35, Shinanomachi Shinjyukuku, Tokyo, 160-8582, Japan
| |
Collapse
|
11
|
Cui Y, Liu S, Zhang X, Ding X, Duan X, Zhu Z, Zhang J, Liang H, Wang D, Zhang G, Yu Z, Yang J, Sun T. Metabolomic Analysis of the Effects of Adipose-Derived Mesenchymal Stem Cell Treatment on Rats With Sepsis-Induced Acute Lung Injury. Front Pharmacol 2020; 11:902. [PMID: 32625095 PMCID: PMC7311761 DOI: 10.3389/fphar.2020.00902] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Given the high mortality associated with sepsis, there is an urgent need for a full understanding of sepsis pathophysiology and finding new therapeutic regimens. Adipose-derived mesenchymal stem cells (ADMSCs) has been proven to have anti-inflammatory effects and could be used to treat cecal ligation and puncture (CLP) induced lung and liver injury in septic rat models. In this study, we used metabolomics to investigate small molecule metabolites between CLP and ADMSCs treatment groups. Sixty SD rats were randomly assigned to the sham operation group (SC group), the CLP group, and the CLP+ADMSCs group (CLP-ADMSCs group). We used liquid mass spectrometry-chromatography to detect metabolic changes in plasma and lung tissues. Compared with the SC group, the metabolic profile of plasma and lung tissues changed significantly 24 h after CLP. Moreover, 22 and 11 main differential metabolites involved in amino acid and glycerophospholipid metabolism were found in plasma and lung tissues, respectively. After the rats were injected with ADMSCs, these differential metabolites were reverse-regulated both in plasma and lung tissues. Besides, ADMSCs improved the survival rate and down-regulated the concentration of TNF-α and IL-6 at 24 h after CLP. The correlational analysis between plasma of IL-6/TNF-α and metabolites suggested that acetylcholine, spermine, phenylalanine, threonine of plasma and phosphatidylcholine (36:4) of lung tissues were significantly associated with IL-6/TNF-α in CLP and CLP-ADMSCs groups. ADMSCs might reverse abnormal metabolic pathways by reducing anti-inflammatory factors in sepsis-induced ALI. Our findings may provide novel metabolic mechanism of ADMSCs therapy for sepsis.
Collapse
Affiliation(s)
- Yuqing Cui
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Shaohua Liu
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Xiaojuan Zhang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Xianfei Ding
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Xiaoguang Duan
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Zijia Zhu
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huoyan Liang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Dong Wang
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| | - Guojun Zhang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianjun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tongwen Sun
- General ICU, The First Affiliated Hospital of Zhengzhou University, Henan Key Laboratory of Critical Care Medicine, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, China
| |
Collapse
|
12
|
Sun XY, Ding XF, Liang HY, Zhang XJ, Liu SH, Bing-Han, Duan XG, Sun TW. Efficacy of mesenchymal stem cell therapy for sepsis: a meta-analysis of preclinical studies. Stem Cell Res Ther 2020; 11:214. [PMID: 32493435 PMCID: PMC7268531 DOI: 10.1186/s13287-020-01730-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/28/2020] [Accepted: 05/13/2020] [Indexed: 12/12/2022] Open
Abstract
Background Multiple studies have reported that mesenchymal stem cell (MSC) therapy has beneficial effects in experimental models of sepsis. However, this finding remains inconclusive. This study was performed to systematically determine the connection between MSC therapy and mortality in sepsis animal models by pooling and analyzing data from newly published studies. Methods A detailed search of related studies from 2009 to 2019 was conducted in four databases, including MEDLINE, EMBASE, Cochrane Library, and Web of Science. After browsing and filtering out articles that met the inclusion criteria for statistical analysis, the inverse variance method of the fixed effects model was used to calculate the pooled odds ratios (ORs) and their 95% confidence intervals (CIs). Results Twenty-nine animal studies, including 1266 animals, were identified. None of the studies was judged to have a low risk of bias. The meta-analysis demonstrated that MSC therapy was related to a significantly lower mortality rate (OR 0.29, 95% CI 0.22–0.38, P < 0.001). Subgroup analyses performed based on the MSC injection dose (< 1.0 × 106 cells, OR = 0.33, 95% CI 0.20–0.56, P < 0.001; 1.0 × 106 cells, OR = 0.24, 95% CI 0.16–0.35, P < 0.001) and injection time (< 1 h, OR = 0.24, 95% CI 0.13–0.45, P < 0.001; 1 h, OR = 0.28, 95% CI 0.17–0.46, P < 0.001) demonstrated that treatment with MSCs significantly reduced the mortality rate of animals with sepsis. Conclusion This up-to-date meta-analysis showed a connection between MSC therapy and lower mortality in sepsis animal models, supporting the potential therapeutic effect of MSC treatment in future clinical trials. The results in this study contradict a previous meta-analysis with regards to the ideal dose of MSC therapy. Thus, further research is required to support these findings.
Collapse
Affiliation(s)
- Xue-Yi Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Xian-Fei Ding
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Huo-Yan Liang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Xiao-Juan Zhang
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Shao-Hua Liu
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Bing-Han
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Xiao-Guang Duan
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China
| | - Tong-Wen Sun
- General ICU, Henan Key Laboratory of Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou Key Laboratory of Sepsis, Zhengzhou, 450052, China.
| |
Collapse
|
13
|
Horak J, Nalos L, Martinkova V, Tegl V, Vistejnova L, Kuncova J, Kohoutova M, Jarkovska D, Dolejsova M, Benes J, Stengl M, Matejovic M. Evaluation of Mesenchymal Stem Cell Therapy for Sepsis: A Randomized Controlled Porcine Study. Front Immunol 2020; 11:126. [PMID: 32117276 PMCID: PMC7019005 DOI: 10.3389/fimmu.2020.00126] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 01/17/2020] [Indexed: 01/22/2023] Open
Abstract
Background: Treatment with mesenchymal stem cells (MSCs) has elicited considerable interest as an adjunctive therapy in sepsis. However, the encouraging effects of experiments with MSC in rodents have not been adequately studied in large-animal models with better relevance to human sepsis. Objectives: Here, we aimed to assess safety and efficacy of bone marrow-derived MSCs in a clinically relevant porcine model of progressive peritonitis-induced sepsis. Methods: Thirty-two anesthetized, mechanically ventilated, and instrumented pigs were randomly assigned into four groups (n = 8 per group): (1) sham-operated group (CONTROL); (2) sham-operated group treated with MSCs (MSC-CONTROL); (3) sepsis group with standard supportive care (SEPSIS); and (4) sepsis group treated with MSCs (MSC-SEPSIS). Peritoneal sepsis was induced by inoculating cultivated autologous feces. MSCs (1 × 106/kg) were administered intravenously at 6 h after sepsis induction. Results: Before, 12, 18, and 24 h after the induction of peritonitis, we measured systemic, regional, and microvascular hemodynamics, multiple-organ functions, mitochondrial energy metabolism, systemic immune-inflammatory response, and oxidative stress. Administration of MSCs in the MSC-CONTROL group did not elicit any measurable acute effects. Treatment of septic animals with MSCs failed to mitigate sepsis-induced hemodynamic alterations or the gradual rise in Sepsis-related organ failure assessment scores. MSCs did not confer any protection against sepsis-mediated cellular myocardial depression and mitochondrial dysfunction. MSCs also failed to modulate the deregulated immune-inflammatory response. Conclusion: Intravenous administration of bone marrow-derived MSCs to healthy animals was well-tolerated. However, in this large-animal, clinically relevant peritonitis-induced sepsis model, MSCs were not capable of reversing any of the sepsis-induced disturbances in multiple biological, organ, and cellular systems.
Collapse
Affiliation(s)
- Jan Horak
- First Medical Department, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
| | - Lukas Nalos
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Vendula Martinkova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Third Department of Surgery, University Hospital Motol and First Medical School, Charles University, Prague, Czechia
| | - Vaclav Tegl
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Anesthesia and Intensive Care Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Lucie Vistejnova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Histology and Embryology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jitka Kuncova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Michaela Kohoutova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Dagmar Jarkovska
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Martina Dolejsova
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
| | - Jan Benes
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Anesthesia and Intensive Care Medicine, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Milan Stengl
- Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia.,Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Martin Matejovic
- First Medical Department, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia.,Faculty of Medicine in Pilsen, Biomedical Center, Charles University, Pilsen, Czechia
| |
Collapse
|
14
|
Patry C, Doniga T, Lenz F, Viergutz T, Weiss C, Tönshoff B, Kalenka A, Yard B, Krebs J, Schaible T, Beck G, Rafat N. Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. PLoS One 2020; 15:e0227460. [PMID: 31986159 PMCID: PMC6984734 DOI: 10.1371/journal.pone.0227460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/18/2019] [Indexed: 01/31/2023] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial and endothelial barrier dysfunction and injury. In severe forms of ARDS, extracorporeal membrane oxygenation (ECMO) is often the last option for life support. Endothelial progenitor (EPC) and mesenchymal stem cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. However, we still lack sufficient knowledge about how ECMO might affect EPC- and MSC-mediated regenerative pathways in ARDS. Therefore, we investigated if ECMO impacts EPC and MSC numbers in ARDS patients. Methods Peripheral blood mononuclear cells from ARDS patients undergoing ECMO (n = 16) and without ECMO support (n = 12) and from healthy volunteers (n = 16) were isolated. The number and presence of circulating EPC and MSC was detected by flow cytometry. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) were determined. Results In the ECMO group, MSC subpopulations were higher by 71% compared to the non-ECMO group. Numbers of circulating EPC were not significantly altered. During ECMO, VEGF and Ang2 serum levels remained unchanged compared to the non-ECMO group (p = 0.16), but Ang2 serum levels in non-survivors of ARDS were significantly increased by 100% (p = 0.02) compared to survivors. Conclusions ECMO support in ARDS is specifically associated with an increased number of circulating MSC, most likely due to enhanced mobilization, but not with a higher numbers of EPC or serum concentrations of VEGF and Ang2.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Thalia Doniga
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Franziska Lenz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Armin Kalenka
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Bergstraße, Heppenheim, Germany
| | - Benito Yard
- Department of Medicine V, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jörg Krebs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anaesthesiology and Intensive Care Medicine, Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Neysan Rafat
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
- * E-mail:
| |
Collapse
|
15
|
Marrazzo P, Crupi AN, Alviano F, Teodori L, Bonsi L. Exploring the roles of MSCs in infections: focus on bacterial diseases. J Mol Med (Berl) 2019; 97:437-450. [PMID: 30729280 DOI: 10.1007/s00109-019-01752-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/08/2023]
Abstract
Despite human healthcare advances, some microorganisms continuously react evolving new survival strategies, choosing between a commensal fitness and a pathogenic attitude. Many opportunistic microbes are becoming an increasing cause of clinically evident infections while several renowned infectious diseases sustain a considerable number of deaths. Besides the primary and extensively investigated role of immune cells, other cell types are involved in the microbe-host interaction during infection. Interestingly, mesenchymal stem cells (MSCs), the current leading players in cell therapy approaches, have been suggested to contribute to tackling pathogens and modulating the host immune response. In this context, this review critically explores MSCs' role in E. coli, S. aureus, and polymicrobial infections. Summarizing from various studies, in vitro and in vivo results support the mechanistic involvement of MSCs and their derivatives in fighting infection and in contributing to microbial spreading. Our work outlines the double face of MSCs during infection, disease, and sepsis, highlighting potential pitfalls in MSC-based therapy due to the MSCs' susceptibility to pathogens' weapons. We also identify potential targets to improve infection treatments, and propose the potential applications of MSCs for vaccine research.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| | | | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy.
| | - Laura Teodori
- Diagnostics and Metrology, FSN-TECFIS-DIM, Enea Frascati, Rome, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, Unit of Histology, Embryology and Applied Biology, University of Bologna, Via Belmeloro 8, 40126, Bologna, Italy
| |
Collapse
|
16
|
Rafat N, Patry C, Sabet U, Viergutz T, Weiss C, Tönshoff B, Beck G, Schaible T. Endothelial Progenitor and Mesenchymal Stromal Cells in Newborns With Congenital Diaphragmatic Hernia Undergoing Extracorporeal Membrane Oxygenation. Front Pediatr 2019; 7:490. [PMID: 31824902 PMCID: PMC6882772 DOI: 10.3389/fped.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Endothelial progenitor (EPC) and mesenchymal stromal cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. We do not know, how extracorporeal membrane oxygenation (ECMO) might affect EPC- and MSC-mediated regenerative pathways in patients with congenital diaphragmatic hernia (CDH). Therefore, we investigated, if ECMO support impacts EPC and MSC numbers in CDH patients. Methods: Peripheral blood mononuclear cells from newborns with ECMO-dependent (n = 18) and ECMO-independent CDH (n = 12) and from healthy controls (n = 12) were isolated. The numbers of EPC and MSC were identified by flowcytometry. Serum levels of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined. Results: EPC and MSC were elevated in newborns with CDH. ECMO-dependent infants had higher EPC subpopulation counts (2,1-7,6-fold) before treatment compared to ECMO-independent infants. In the disease course, EPC and MSC subpopulation counts in ECMO-dependent infants were lower than before ECMO initiation. During ECMO, VEGF serum levels were significantly reduced (by 90.5%) and Ang2 levels significantly increased (by 74.8%). Conclusions: Our data suggest that ECMO might be associated with a rather impaired mobilization of EPC and MSC and with a depression of VEGF serum levels in newborns with CDH.
Collapse
Affiliation(s)
- Neysan Rafat
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
| | - Christian Patry
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Ursula Sabet
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christel Weiss
- Department for Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anesthesiology, Helios Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
17
|
Abstract
Abstract
Sepsis is a life-threatening syndrome resulting in shock and organ dysfunction stemming from a microbial infection. Sepsis has a mortality of 40% and is implicated in half of all in-hospital deaths. The host immune response to microbial infection is critical, with early-phase sepsis characterized by a hyperinflammatory immune response, whereas the later phase of sepsis is often complicated by suppression. Sepsis has no treatment, and management remains supportive.
Stem cells constitute exciting potential therapeutic agents for sepsis. In this review, we examine the rationale for stem cells in sepsis, focusing on mesenchymal stem/stromal cells, which currently demonstrate the greatest therapeutic promise. We examine the preclinical evidence base and evaluate potential mechanisms of action of these cells that are important in the setting of sepsis. We discuss early-phase clinical trials and critically appraise translational barriers to the use of mesenchymal stem/stromal cells in patients with sepsis.
Collapse
|
18
|
Hassan G, Kasem I, Soukkarieh C, Aljamali M. A Simple Method to Isolate and Expand Human Umbilical Cord Derived Mesenchymal Stem Cells: Using Explant Method and Umbilical Cord Blood Serum. Int J Stem Cells 2017; 10:184-192. [PMID: 28844128 PMCID: PMC5741200 DOI: 10.15283/ijsc17028] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2017] [Indexed: 12/26/2022] Open
Abstract
Background and Objectives Mesenchymal stem cells (MSCs) are multipotent stem cells that can be isolated from umbilical cords and are therapeutically used because of their ability to differentiate into various types of cells, in addition to their immunosuppressive and anti-inflammatory properties. Fetal bovine serum (FBS), considered as the standard additive when isolating and culturing MSCs, has a major limitation related to its animal origin. Here, we employed a simple and economically efficient protocol to isolate MSCs from human umbilical cord tissues without using digestive enzymes and replacing FBS with umbilical cord blood serum (CBS). Methods and Results MSCs were isolated by culturing umbilical cord pieces in CBS or FBS supplemented media. Expansion and proliferation kinetics of cells isolated by explant method in the presence of either FBS or CBS were measured, with morphology and multi-differentiation potential of expanded cells characterized by flow cytometry, RT-PCR, and immunofluorescence. MSCs maintained morphology, immunophenotyping, multi-differentiation potential, and self-renewal ability, with better proliferation rates for cells cultured in CBS compared to FBS supplement media. Conclusions We here present a simple, reliable and efficient method to isolate MSCs from umbilical cord tissues, where cells maintained proliferation, differentiation potential and immunophenotyping properties and could be efficiently expanded for clinical applications.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria
| | - Issam Kasem
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| | - Majd Aljamali
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, Syria.,National Commission for Biotechnology (NCBT), Damascus, Syria
| |
Collapse
|
19
|
Mesenchymal Stem Cells in Sepsis and Associated Organ Dysfunction: A Promising Future or Blind Alley? Stem Cells Int 2017; 2017:7304121. [PMID: 29098010 PMCID: PMC5618761 DOI: 10.1155/2017/7304121] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/06/2017] [Indexed: 12/17/2022] Open
Abstract
Sepsis, newly defined as a life-threatening organ dysfunction caused by a dysregulated host response to infection, is the most common cause of death in ICUs and one of the principal causes of death worldwide. Although substantial progress has been made in the understanding of fundamental mechanisms of sepsis, translation of these advances into clinically effective therapies has been disappointing. Given the extreme complexity of sepsis pathogenesis, the paradigm “one disease, one drug” is obviously flawed and combinations of multiple targets that involve early immunomodulation and cellular protection are needed. In this context, the immune-reprogramming properties of cell-based therapy using mesenchymal stem cells (MSC) represent an emerging therapeutic strategy in sepsis and associated organ dysfunction. This article provides an update of the current knowledge regarding MSC in preclinical models of sepsis and sepsis-induced acute kidney injury. Recommendations for further translational research in this field are discussed.
Collapse
|
20
|
Prockop DJ, Oh JY, Lee RH. Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs. Mol Ther 2017. [PMID: 28647464 DOI: 10.1016/j.ymthe.2017.06.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Much of what we know about immunology suggests that little is to be gained from experiments in which human cells are administered to immunocompetent mice. Multiple reports have demonstrated that this common assumption does not hold for experiments with human mesenchymal stem/stromal cells (hMSCs). The data demonstrate that hMSCs can suppress immune responses to a variety of stimuli in immunocompetent mice by a range of different mechanisms that are similar to those employed by mouse MSCs. Therefore, further experiments with hMSCs in mice will make it possible to generate preclinical data that will improve both the efficacy and safety of the clinical trials with the cells that are now in progress.
Collapse
Affiliation(s)
- Darwin J Prockop
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA.
| | - Joo Youn Oh
- Department of Ophthalmology, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea; Laboratory of Ocular Regenerative Medicine and Immunology, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul 110-744, Korea
| | - Ryang Hwa Lee
- Institute for Regenerative Medicine, College of Medicine, Texas A&M University, 1114 TAMU, 206 Olsen Boulevard, College Station, TX 77845, USA
| |
Collapse
|