1
|
Abualnadi R, Tarboush NA, Shhab M, Zihlif M. Gene expression alterations in hypoxic A549 lung cancer cell line. Biomed Rep 2024; 21:183. [PMID: 39420921 PMCID: PMC11484184 DOI: 10.3892/br.2024.1871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/26/2024] [Indexed: 10/19/2024] Open
Abstract
Human non-small cell lung cancer (NSCLC)is a very common disease with limited treatment options. Hypoxia is a characteristic feature of solid tumors associated with the resistance of cancer cells to radiotherapy and chemotherapy. Therefore, the expression changes in cancer-resistance genes may be biomarkers of hypoxia with value in targeted therapy. The aim of the present study was to examine the effect of hypoxia on gene expression and the changes that occur in relation to drug resistance in a human NSCLC cell line (A549). A549 cells were exposed to 72-h hypoxic episodes (<1% oxygen) for a total of 10 episodes (acute). The alterations in gene expression were examined using PCR array technology after 10 episodes of acute hypoxia and compared with normoxic cells. The chemoresistance of hypoxic cells toward doxorubicin was measured using a MTT cell proliferation assay. A549 cells were affected by acute hypoxia leading to induced doxorubicin chemoresistance. Evident changes in the gene expression level were identified following episodes of acute hypoxia. The most important changes occurred in the estrogen receptor 1 (ESR1) and Finkel-Biskis-Jinkins osteosarcoma (FOS) pathways and in different nucleic transcription factors such as aryl hydrocarbon receptor and cyclin-dependent kinase inhibitor. The present study showed that exposing cells to prolonged periods of hypoxia results in different gene expression changes. There was induction of chemo-resistance due to acute hypoxia. ESR1 and c-FOS are proposed as a potential hypoxia genes in lung cancer.
Collapse
Affiliation(s)
- Rania Abualnadi
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Nafez Abu Tarboush
- Department of Physiology and Biochemistry, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Shhab
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
2
|
Liu S, Gao M, Zhang X, Wei J, Cui H. FOXP2 overexpression upregulates LAMA4 expression and thereby alleviates preeclampsia by regulating trophoblast behavior. Commun Biol 2024; 7:1427. [PMID: 39487340 PMCID: PMC11530449 DOI: 10.1038/s42003-024-07149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024] Open
Abstract
Preeclampsia (PE) is a common pregnancy disorder characterized by hypertension and proteinuria. Trophoblast behavior severely affect PE progression. Transcription factor Forkhead box protein P2 (FOXP2) was involved in cell migration and invasion, but its role in PE progression remains unknown. Laminin subunit alpha 4 (LAMA4) was predicted as a downstream gene of FOXP2 and related to PE. Thus, we supposed that FOXP2 might regulate PE by regulating LAMA4. We found the decreased FOXP2 expression in patients with PE compared with healthy pregnant women. The rat model of PE was induced by L-NAME oral gavage. FOXP2 overexpression lowered systolic and diastolic blood pressure and restored pathological changes of rats with PE. Trophoblasts under the hypoxia/reoxygenation (H/R) treatment were used to mimic PE in vitro. The results revealed that FOXP2 overexpression inhibited apoptosis but promoted migration, invasion, and angiogenesis of H/R-treated trophoblasts. Dual luciferase and chromatin immunoprecipitation-polymerase chain reaction assays confirmed that FOXP2 transcriptionally upregulated the LAMA4 expression in trophoblasts. LAMA4 knockdown reversed the migration and invasion-promoting role of FOXP2 overexpression in trophoblasts with H/R treatment. Collectively, our findings suggest that the FOXP2/LAMA4 axis regulates PE by suppressing trophoblast apoptosis and promoting its migration, invasion, and angiogenesis.
Collapse
Affiliation(s)
- Sishi Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Man Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Xue Zhang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China
| | - Hong Cui
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, 36# Sanhao Street, Shenyang, 110004, China.
| |
Collapse
|
3
|
Cheon I, Kim M, Kim KH, Ko S. Hepatic Nuclear Receptors in Cholestasis-to-Cholangiocarcinoma Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2024:S0002-9440(24)00358-4. [PMID: 39326734 DOI: 10.1016/j.ajpath.2024.07.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Cholestasis, characterized by impaired bile flow, is associated with an increased risk of cholangiocarcinoma (CCA), a malignancy originating from the biliary epithelium and hepatocytes. Hepatic nuclear receptors (NRs) are pivotal in regulating bile acid and metabolic homeostasis, and their dysregulation is implicated in cholestatic liver diseases and the progression of liver cancer. This review elucidates the role of various hepatic NRs in the pathogenesis of cholestasis-to-CCA progression. We explore their impact on bile acid metabolism as well as their interactions with other signaling pathways implicated in CCA development. Additionally, we introduce available murine models of cholestasis/primary sclerosing cholangitis leading to CCA and discuss the clinical potential of targeting hepatic NRs as a promising approach for the prevention and treatment of cholestatic liver diseases and CCA. Understanding the complex interplay between hepatic NRs and cholestasis-to-CCA pathology holds promise for the development of novel preventive and therapeutic strategies for this devastating disease.
Collapse
Affiliation(s)
- Inyoung Cheon
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas; Department of Molecular Medicine and Inflammation-Cancer Microenvironment Research Center, College of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Minwook Kim
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Kang Ho Kim
- Department of Anesthesiology, Critical Care, and Pain Medicine and Center for Perioperative Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas.
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
4
|
Ren H, Huang L, Zhang H, Huang M, Meng J, Luo D. Unveiling the role of RARs in stomach adenocarcinoma: clinical implications and prognostic biomarkers. Transl Cancer Res 2024; 13:3974-3995. [PMID: 39262490 PMCID: PMC11384927 DOI: 10.21037/tcr-23-2154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 07/10/2024] [Indexed: 09/13/2024]
Abstract
Background Retinoic acid receptors (RARs) family are known to play a significant role in the occurrence and development of tumors. However, the relationship between RARs and stomach adenocarcinoma (STAD) has not yet been clearly identified. The aim of this study is to evaluate the expression profile and clinical value of the RARs family in STAD. Methods The expression level, clinical characteristics, prognostic value, immunity-related evaluations, genetic alteration and methylation site of RARs in STAD were explored using a series of online databases including gene expression profiling interactive analysis (GEPIA), tumor immune estimation resource (TIMER), University of Alabama at Birmingham cancer data (UALCAN), Human Protein Atlas (HPA), Kaplan-Meier plotter, gene set cancer analysis (GSCA), cBioPortal, MethSurv, GeneMANIA, LinkedOmics, Metascape, Search tool for the retrieval of interacting genes (STRING), tumor immune single-cell hub (TISCH) and cancer cell line encyclopedia (CCLE). Results We discovered dramatically increased expression of RARA and decreased expression of RARB in STAD tissues, and many clinical variables were closely related to RARs. Notably, higher expressions of RARA and RARB as well as lower expression of RARG correlated with worse overall survival (OS) for STAD patients. The clinical value of prognostic model indicated that RARs were identified to be potential prognostic biomarkers for STAD patients. Moreover, RARB was closely related to immune cell infiltration, which had effect on the role of RARB in STAD prognosis. And the genetic alteration of RARB was significantly associated with the longer disease-free survival (DFS) of STAD patients. Additionally, some CpG sites of the RARs family were related with the prognosis of STAD patients. Functional enrichment analyses indicated that several pathways in STAD might be pivotal pathways regulated by RARs. At the single-cell level, there was some extent of infiltration of tumor microenvironment-related cells in the RARs expression in STAD. Conclusions Our results evaluated the expression profile and clinical values of RARs in patients with STAD, which provided a basis for future in-depth exploration of the specific mechanisms of each member of RARs in STAD.
Collapse
Affiliation(s)
- Hongyue Ren
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Lifeng Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Haiyan Zhang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Meirong Huang
- Department of Basic Medicine, Zhangzhou Health Vocational College, Zhangzhou, China
| | - Jiarong Meng
- Department of Pathology, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, China
| | - Deqing Luo
- Department of Orthopaedic Surgery, Dongnan Hospital of Xiamen University, School of Medicine, Xiamen University, Zhangzhou, China
| |
Collapse
|
5
|
Butsri S, Kukongviriyapan V, Senggunprai L, Kongpetch S, Prawan A. All‑ trans‑retinoic acid induces RARB‑dependent apoptosis via ROS induction and enhances cisplatin sensitivity by NRF2 downregulation in cholangiocarcinoma cells. Oncol Lett 2022; 23:179. [PMID: 35464301 PMCID: PMC9025595 DOI: 10.3892/ol.2022.13299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/03/2022] [Indexed: 11/27/2022] Open
Abstract
All-trans-retinoic acid (ATRA) has been clinically used to treat acute promyelocytic leukemia and is being studied to treat other types of cancer; however, the therapeutic role and mechanism of ATRA against cholangiocarcinoma (CCA) remain unclear. The present study investigated the cytotoxic effect and underlying mechanisms of ATRA on CCA cell lines. Cell viability was evaluated by sulforhodamine B assay. Intracellular reactive oxygen species (ROS) levels were assessed by dihydroethidium assay. Apoptosis analysis was performed by flow cytometry. The pathways of apoptotic cell death induction were examined using enzymatic caspase activity assay. Proteins associated with apoptosis were evaluated by western blotting. The effects on gene expression were analyzed by reverse transcription-quantitative PCR analysis. ATRA induced a concentration- and time-dependent toxicity in CCA cells. Furthermore, when the cytotoxicity of ATRA against retinoic acid receptor (RAR)-deficient cells was assessed, it was revealed that ATRA cytotoxicity was RARB-dependent. Following ATRA treatment, there was a significant accumulation of cellular ROS and ATRA-induced ROS generation led to an increase in the expression levels of apoptosis-inducing proteins and intrinsic apoptosis. Pre-treatment with ROS scavengers could diminish the apoptotic effect of ATRA, suggesting that ROS and mitochondria may have an essential role in the induction of apoptosis. Furthermore, following ATRA treatment, an increase in cellular ROS content was associated with suppressing nuclear factor erythroid 2-related factor 2 (NFE2L2 or NRF2) and NRF2-downstream active genes. ATRA also suppressed cisplatin-induced NRF2 expression, suggesting that the enhancement of cisplatin cytotoxicity by ATRA may be associated with the downregulation of NRF2 signaling. In conclusion, the results of the present study demonstrated that ATRA could be repurposed as an alternative drug for CCA therapy.
Collapse
Affiliation(s)
- Siriwoot Butsri
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
6
|
Yago-Ibáñez J, García-Pastor C, Lucio-Cazaña FJ, Fernández-Martínez AB. Retinoic acid receptor-beta prevents cisplatin-induced proximal tubular cell death. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165795. [PMID: 32278009 DOI: 10.1016/j.bbadis.2020.165795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/26/2020] [Accepted: 04/06/2020] [Indexed: 01/14/2023]
Abstract
Cisplatin's toxicity in renal tubular epithelial cells limits the therapeutic efficacy of this antineoplastic drug. In cultured human proximal tubular HK-2 cells (PTC) a prostaglandin uptake transporter (PGT)-dependent increase in intracellular prostaglandin E2 (iPGE2) mediates cisplatin's toxicity (i.e. increased cell death and loss of cell proliferation) so that it is prevented by PGT inhibitors. Here we found in cisplatin-treated PTC that 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), a PGT inhibitor, prevented cisplatin's toxicity but not the increase in iPGE2. Because expression of retinoic acid receptor-β (RAR-β) is dependent on iPGE2 and because RAR-β is a regulator of cell survival and proliferation, we hypothesized that RAR-β might mediate the protective effect of DIDS against cisplatin's toxicity in PTC. Our results confirmed this hypothesis because: i) protection of PTC by DIDS was abolished by RAR-β antagonist LE-135; ii) DIDS increased the expression of RAR-β in PTC and prevented its decrease in cisplatin-treated PTC but not in cisplatin-treated human cervical adenocarcinoma HeLa cells in which DIDS failed to prevent cisplatin's toxicity; iii) while RAR-β expression decreased in cisplatin-treated PTC, RAR-β over-expression prevented cisplatin's toxicity. RAR-β agonist CH55 or RAR pan-agonist all-trans retinoic acid did not prevent cisplatin's toxicity, which suggests that RAR-β does not protect PTC through activation of gene transcription. In conclusion, RAR-β might be a new player in cisplatin-induced proximal tubular injury and the preservation of its expression in proximal tubules through treatment with DIDS might represent a novel strategy in the prevention of cisplatin's nephrotoxicity without compromising cisplatin's chemotherapeutic effect on cancer cells.
Collapse
Affiliation(s)
- Julia Yago-Ibáñez
- Departamento de Biología, Universidad Autónoma de Madrid, Madrid, Spain
| | - Coral García-Pastor
- Departamento de Biología de Sistemas, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | | | | |
Collapse
|
7
|
Models for Understanding Resistance to Chemotherapy in Liver Cancer. Cancers (Basel) 2019; 11:cancers11111677. [PMID: 31671735 PMCID: PMC6896032 DOI: 10.3390/cancers11111677] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022] Open
Abstract
The lack of response to pharmacological treatment constitutes a substantial limitation in the handling of patients with primary liver cancers (PLCs). The existence of active mechanisms of chemoresistance (MOCs) in hepatocellular carcinoma, cholangiocarcinoma, and hepatoblastoma hampers the usefulness of chemotherapy. A better understanding of MOCs is needed to develop strategies able to overcome drug refractoriness in PLCs. With this aim, several experimental models are commonly used. These include in vitro cell-free assays using subcellular systems; studies with primary cell cultures; cancer cell lines or heterologous expression systems; multicellular models, such as spheroids and organoids; and a variety of in vivo models in rodents, such as subcutaneous and orthotopic tumor xenografts or chemically or genetically induced liver carcinogenesis. Novel methods to perform programmed genomic edition and more efficient techniques to isolate circulating microvesicles offer new opportunities for establishing useful experimental tools for understanding the resistance to chemotherapy in PLCs. In the present review, using three criteria for information organization: (1) level of research; (2) type of MOC; and (3) type of PLC, we have summarized the advantages and limitations of the armamentarium available in the field of pharmacological investigation of PLC chemoresistance.
Collapse
|
8
|
Wandee J, Prawan A, Senggunprai L, Kongpetch S, Kukongviriyapan V. Metformin sensitizes cholangiocarcinoma cell to cisplatin-induced cytotoxicity through oxidative stress mediated mitochondrial pathway. Life Sci 2018; 217:155-163. [PMID: 30528773 DOI: 10.1016/j.lfs.2018.12.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/02/2018] [Accepted: 12/05/2018] [Indexed: 01/17/2023]
Abstract
AIMS Metformin (Met), an essential antidiabetic agent, shows antitumor activity in some cancers. A previous study showed that Met enhanced cytotoxic activity of cisplatin (Cis) in cholangiocarcinoma (CCA) in association with the activation of AMP-activated protein kinase and suppression of Akt-mTOR. However, these effects do not entirely explain the observed chemosensitizing effect. The present study investigated the interaction of Met and Cis over the enhanced antitumor effect. MAIN METHODS KKU-100 and KKU-M156 cells were used in the study. Cytotoxicity was assessed by acridine orange-ethidium bromide staining. Reactive oxygen species (ROS) and mitochondrial transmembrane potential (Δψm) were measured by dihydroethidium and JC-1 fluorescent methods. Cellular glutathione (GSH) and redox ratio were analyzed by enzymatic coupling assay. Proteins associated with antioxidant system and cell death were evaluated by western immunoblot. KEY FINDINGS Cytotoxicity of Cis was enhanced by Met in association with ROS formation and GSH redox stress. The antioxidants, N-acetylcysteine and TEMPOL, and MPTP inhibitor, cyclosporine, attenuated cytotoxicity in association with suppression of ROS formation and the losses of Δψm. Met in combination with Cis suppressed expression of Nrf2 and altered the expression of Bcl2 family proteins. SIGNIFICANCE The chemosensitizing effect of Met in combination with Cis is causally associated with increased oxidative stress-mediated mitochondrial cell death pathway. Met may improve the efficacy of Cis in the treatment of cancer.
Collapse
Affiliation(s)
- Jaroon Wandee
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand
| | - Auemduan Prawan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Laddawan Senggunprai
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Sarinya Kongpetch
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand
| | - Veerapol Kukongviriyapan
- Department of Pharmacology, Faculty of Medicine, Khon Kaen University, 40002, Thailand; Cholangiocarcinoma Research Institute, Khon Kaen University, 40002, Thailand.
| |
Collapse
|
9
|
Yu W, Xiang Y, Luo G, Zhao X, Xiao B, Cheng Y, Feng C, Duan C, Xia X, Wong VKW, Dai R. Salubrinal Enhances Doxorubicin Sensitivity in Human Cholangiocarcinoma Cells Through Promoting DNA Damage. Cancer Biother Radiopharm 2018; 33:258-265. [PMID: 29957018 DOI: 10.1089/cbr.2018.2447] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Cholangiocarcinoma (CCA) is a highly malignant and aggressive tumor of the bile duct that arises from epithelial cells. Chemotherapy is an important treatment strategy for CCA patients, but its efficacy remains limited due to drug resistance. Salubrinal, an inhibitor of eukaryotic translation initiation factor 2 alpha (eIF2α), has been reported to affect antitumor activities in cancer chemotherapy. In this study, the authors investigated the effect of salubrinal on the chemosensitivity of doxorubicin in CCA cells. They showed that doxorubicin induces CCA cell death in a dose- and time-dependent manner. Doxorubicin triggers reactive oxygen species (ROS) generation and induces DNA damage in CCA cells. In addition, ROS inhibitor N-acetylcysteine (NAC) pretreatment inhibits doxorubicin-induced CCA cell death. Importantly, these data demonstrate a synergistic death induction effect contributed by the combination of salubrinal and doxorubicin in CCA cells. It is notable that salubrinal promotes doxorubicin-induced ROS production and DNA damage in CCA cells. Taken together, these data suggest that salubrinal enhances the sensitivity of doxorubicin in CCA cells through promoting ROS-mediated DNA damage.
Collapse
Affiliation(s)
- Wenjing Yu
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Taipei, China .,2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| | - Yuancai Xiang
- 2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| | - Guosong Luo
- 3 Department of Hepatobiliary Surgery of the Affiliated Hospital, Southwest Medical University , Luzhou, China
| | - Xiaofang Zhao
- 2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| | - Bin Xiao
- 2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| | - Ying Cheng
- 2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| | - Chunhong Feng
- 3 Department of Hepatobiliary Surgery of the Affiliated Hospital, Southwest Medical University , Luzhou, China
| | - Chunyan Duan
- 2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| | - Xianming Xia
- 3 Department of Hepatobiliary Surgery of the Affiliated Hospital, Southwest Medical University , Luzhou, China
| | - Vincent Kam Wai Wong
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Taipei, China
| | - Rongyang Dai
- 1 State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology , Taipei, China .,2 Department of Biochemistry and Molecular Biology, Southwest Medical University , Luzhou, China
| |
Collapse
|
10
|
Xia Y, Wang C, Xu T, Li Y, Guo M, Lin Z, Zhao M, Zhu B. Targeted delivery of HES5-siRNA with novel polypeptide-modified nanoparticles for hepatocellular carcinoma therapy. RSC Adv 2018; 8:1917-1926. [PMID: 35542585 PMCID: PMC9077277 DOI: 10.1039/c7ra12461a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 12/15/2017] [Indexed: 12/18/2022] Open
Abstract
For actively targeted delivery of small interfering RNA (siRNA) to solid tumors, we fabricated functionalized selenium nanoparticles (SeNPs) decorated with the polypeptide RGDfC. Herein, RGDfC was used as tumor-targeted moiety and installed onto the surface of SeNPs to enhance the cellular uptake. RGDfC-SeNPs@siRNA were internalized into the HepG2 cell mainly through clathrin-mediated endocytosis. The active efficacy of the RGDfC-SeNPs@siRNA was confirmed via gene silencing assay, MTT assay and flow cytometry analysis. Owing to the tumor-targeting effect of RGDfC, RGDfC-SeNPs@siRNA achieved an obvious improvement in gene silencing ability, which led to significant growth inhibition of HepG2 cells. Furthermore, treatment with RGDfC-SeNPs@siRNA resulted in greater antitumor efficacy than lipofectamine 2000@siRNA in vitro and in vivo. In addition, the RGDfC-SeNPs@siRNA was almost non-toxic to the key organs of mice. In sum, these findings provide an alternative therapeutic route for targeted cancer treatments. A novel polypeptide RGDfC-modified selenium nanoparticle was fabricated to selectively deliver HES5-siRNA to tumors for hepatocellular carcinoma therapy.![]()
Collapse
Affiliation(s)
- Yu Xia
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Changbing Wang
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Tiantian Xu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Yinghua Li
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Min Guo
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Zhengfang Lin
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Mingqi Zhao
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| | - Bing Zhu
- Guangzhou Women and children's Medical center
- Guangzhou
- P. R. China
| |
Collapse
|