1
|
Packer M, Anker SD, Butler J, Cleland JGF, Kalra PR, Mentz RJ, Ponikowski P. Identification of three mechanistic pathways for iron-deficient heart failure. Eur Heart J 2024; 45:2281-2293. [PMID: 38733250 PMCID: PMC11231948 DOI: 10.1093/eurheartj/ehae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Current understanding of iron-deficient heart failure is based on blood tests that are thought to reflect systemic iron stores, but the available evidence suggests greater complexity. The entry and egress of circulating iron is controlled by erythroblasts, which (in severe iron deficiency) will sacrifice erythropoiesis to supply iron to other organs, e.g. the heart. Marked hypoferraemia (typically with anaemia) can drive the depletion of cardiomyocyte iron, impairing contractile performance and explaining why a transferrin saturation < ≈15%-16% predicts the ability of intravenous iron to reduce the risk of major heart failure events in long-term trials (Type 1 iron-deficient heart failure). However, heart failure may be accompanied by intracellular iron depletion within skeletal muscle and cardiomyocytes, which is disproportionate to the findings of systemic iron biomarkers. Inflammation- and deconditioning-mediated skeletal muscle dysfunction-a primary cause of dyspnoea and exercise intolerance in patients with heart failure-is accompanied by intracellular skeletal myocyte iron depletion, which can be exacerbated by even mild hypoferraemia, explaining why symptoms and functional capacity improve following intravenous iron, regardless of baseline haemoglobin or changes in haemoglobin (Type 2 iron-deficient heart failure). Additionally, patients with advanced heart failure show myocardial iron depletion due to both diminished entry into and enhanced egress of iron from the myocardium; the changes in iron proteins in the cardiomyocytes of these patients are opposite to those expected from systemic iron deficiency. Nevertheless, iron supplementation can prevent ventricular remodelling and cardiomyopathy produced by experimental injury in the absence of systemic iron deficiency (Type 3 iron-deficient heart failure). These observations, taken collectively, support the possibility of three different mechanistic pathways for the development of iron-deficient heart failure: one that is driven through systemic iron depletion and impaired erythropoiesis and two that are characterized by disproportionate depletion of intracellular iron in skeletal and cardiac muscle. These mechanisms are not mutually exclusive, and all pathways may be operative at the same time or may occur sequentially in the same patients.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 North Hall Street, Dallas, TX 75226, USA
- Imperial College, London, UK
| | - Stefan D Anker
- Department of Cardiology of German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX, USA
- University of Mississippi Medical Center, Jackson, MS, USA
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul R Kalra
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
2
|
Xu L, Yang M, Wei A, Wei Z, Qin Y, Wang K, Li B, Chen K, Liu C, Li C, Wang T. Aerobic exercise-induced HIF-1α upregulation in heart failure: exploring potential impacts on MCT1 and MPC1 regulation. Mol Med 2024; 30:83. [PMID: 38867145 PMCID: PMC11167843 DOI: 10.1186/s10020-024-00854-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The terminal stage of ischemic heart disease develops into heart failure (HF), which is characterized by hypoxia and metabolic disturbances in cardiomyocytes. The hypoxic failing heart triggers hypoxia-inducible factor-1α (HIF-1α) actions in the cells sensitized to hypoxia and induces metabolic adaptation by accumulating HIF-1α. Furthermore, soluble monocarboxylic acid transporter protein 1 (MCT1) and mitochondrial pyruvate carrier 1 (MPC1), as key nodes of metabolic adaptation, affect metabolic homeostasis in the failing rat heart. Aerobic exercise training has been reported to retard the progression of HF due to enhancing HIF-1α levels as well as MCT1 expressions, whereas the effects of exercise on MCT1 and MPC1 in HF (hypoxia) remain elusive. This research aimed to investigate the action of exercise associated with MCT1 and MPC1 on HF under hypoxia. METHODS The experimental rat models are composed of four study groups: sham stented (SHAM), HF sedentary (HF), HF short-term exercise trained (HF-E1), HF long-term exercise trained (HF-E2). HF was initiated via left anterior descending coronary artery ligation, the effects of exercise on the progression of HF were analyzed by ventricular ultrasound (ejection fraction, fractional shortening) and histological staining. The regulatory effects of HIF-1α on cell growth, MCT1 and MPC1 protein expression in hypoxic H9c2 cells were evaluated by HIF-1α activatort/inhibitor treatment and plasmid transfection. RESULTS Our results indicate the presence of severe pathological remodelling (as evidenced by deep myocardial fibrosis, increased infarct size and abnormal hypertrophy of the myocardium, etc.) and reduced cardiac function in the failing hearts of rats in the HF group compared to the SHAM group. Treadmill exercise training ameliorated myocardial infarction (MI)-induced cardiac pathological remodelling and enhanced cardiac function in HF exercise group rats, and significantly increased the expression of HIF-1α (p < 0.05), MCT1 (p < 0.01) and MPC1 (p < 0.05) proteins compared to HF group rats. Moreover, pharmacological inhibition of HIF-1α in hypoxic H9c2 cells dramatically downregulated MCT1 and MPC1 protein expression. This phenomenon is consistent with knockdown of HIF-1α at the gene level. CONCLUSION The findings propose that long-term aerobic exercise training, as a non- pharmacological treatment, is efficient enough to debilitate the disease process, improve the pathological phenotype, and reinstate cardiac function in HF rats. This benefit is most likely due to activation of myocardial HIF-1α and upregulation of MCT1 and MPC1.
Collapse
Affiliation(s)
- Longfei Xu
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Miaomiao Yang
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Aili Wei
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Zilin Wei
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Yingkai Qin
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Kun Wang
- Military Medical Sciences Academy, Tianjin, 300050, China
| | - Bin Li
- No. 950 Hospital of the Chinese People's Liberation Army, Yecheng, 844999, China
| | - Kang Chen
- Military Medical Sciences Academy, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Chen Liu
- Military Medical Sciences Academy, Tianjin, 300050, China
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China
| | - Chao Li
- Military Medical Sciences Academy, Tianjin, 300050, China.
| | - Tianhui Wang
- Military Medical Sciences Academy, Tianjin, 300050, China.
- Tianjin Key Laboratory of Exercise Physiology & Sports Medicine, Tianjin University of Sport, Tianjin, 301617, China.
| |
Collapse
|
3
|
Corradi F, Masini G, Bucciarelli T, De Caterina R. Iron deficiency in myocardial ischaemia: molecular mechanisms and therapeutic perspectives. Cardiovasc Res 2023; 119:2405-2420. [PMID: 37722377 DOI: 10.1093/cvr/cvad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/14/2023] [Accepted: 07/10/2023] [Indexed: 09/20/2023] Open
Abstract
Systemic iron deficiency (SID), even in the absence of anaemia, worsens the prognosis and increases mortality in heart failure (HF). Recent clinical-epidemiological studies, however, have shown that a myocardial iron deficiency (MID) is frequently present in cases of severe HF, even in the absence of SID and without anaemia. In addition, experimental studies have shown a poor correlation between the state of systemic and myocardial iron. MID in animal models leads to severe mitochondrial dysfunction, alterations of mitophagy, and mitochondrial biogenesis, with profound alterations in cardiac mechanics and the occurrence of a fatal cardiomyopathy, all effects prevented by intravenous administration of iron. This shifts the focus to the myocardial state of iron, in the absence of anaemia, as an important factor in prognostic worsening and mortality in HF. There is now epidemiological evidence that SID worsens prognosis and mortality also in patients with acute and chronic coronary heart disease and experimental evidence that MID aggravates acute myocardial ischaemia as well as post-ischaemic remodelling. Intravenous administration of ferric carboxymaltose (FCM) or ferric dextrane improves post-ischaemic adverse remodelling. We here review such evidence, propose that MID worsens ischaemia/reperfusion injury, and discuss possible molecular mechanisms, such as chronic hyperactivation of HIF1-α, exacerbation of cytosolic and mitochondrial calcium overload, amplified increase of mitochondrial [NADH]/[NAD+] ratio, and depletion of energy status and NAD+ content with inhibition of sirtuin 1-3 activity. Such evidence now portrays iron metabolism as a core factor not only in HF but also in myocardial ischaemia.
Collapse
Affiliation(s)
- Francesco Corradi
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Gabriele Masini
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Tonino Bucciarelli
- Department of Medicine and Aging Sciences, "G. D'Annunzio" University of Chieti-Pescara, Via dei Vestini, 66100, Chieti, Italy
| | - Raffaele De Caterina
- Chair and Postgraduate School of Cardiology, University of Pisa, Via Savi 10, 56126, Pisa, Italy
- Fondazione VillaSerena per la Ricerca, Viale L. Petruzzi 42, 65013, Città Sant'Angelo, Pescara, Italy
| |
Collapse
|
4
|
Franczuk P, Tkaczyszyn M, Kosiorek A, Kulej-Łyko K, Kobak KA, Kasztura M, Sołtowska A, Jaroch J, Ponikowski P, Jankowska EA. Iron Status and Short-Term Recovery after Non-Severe Acute Myocarditis: A Prospective Observational Study. Biomedicines 2023; 11:2136. [PMID: 37626633 PMCID: PMC10452231 DOI: 10.3390/biomedicines11082136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Pathomechanisms responsible for recovery from acute myocarditis (MCD) or progression to non-ischemic cardiomyopathy have not been comprehensively investigated. Iron, positioned at the crossroads of inflammation and the energy metabolism of cardiomyocytes, may contribute to the pathophysiology of inflammatory myocardial disease. The aim of this study was to evaluate whether systemic iron parameters are related to myocardial dysfunction in MCD patients. We prospectively enrolled 42 consecutive patients hospitalized for MCD. Their iron status and their clinical, laboratory, and echocardiographic indices were assessed during hospitalization and during ambulatory visits six weeks after discharge. A control group comprising healthy volunteers was recruited. The MCD patients had higher serum ferritin and hepcidin and lower serum iron concentration and transferrin saturation (TSAT) than the healthy controls (all p < 0.01). Six weeks after discharge, the iron status of the MCD patients was already comparable to that of the control group. During hospitalization, lower serum iron and TSAT correlated with higher NT-proBNP (both p < 0.05). In-hospital lower serum iron and TSAT correlated with both a lower left ventricular ejection fraction (LVEF) and worse left ventricular global longitudinal strain at follow-up visits (all p < 0.05). In conclusion, in patients with acute MCD, iron status is altered and normalizes within six weeks. Low serum iron and TSAT are related to greater in-hospital neurohormonal activation and subtle persistent left ventricular dysfunction.
Collapse
Affiliation(s)
- Paweł Franczuk
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Michał Tkaczyszyn
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Aneta Kosiorek
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | | | - Kamil Aleksander Kobak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland
| | - Alicja Sołtowska
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, 54-049 Wroclaw, Poland
- Division of Internal Medicine Nursing, Faculty of Health Science, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Joanna Jaroch
- Department of Cardiology, Tadeusz Marciniak Lower Silesia Specialist Hospital-Emergency Medicine Center, 54-049 Wroclaw, Poland
- Division of Internal Medicine Nursing, Faculty of Health Science, Wroclaw Medical University, 51-618 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
5
|
Tkaczyszyn M, Górniak KM, Lis WH, Ponikowski P, Jankowska EA. Iron Deficiency and Deranged Myocardial Energetics in Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17000. [PMID: 36554881 PMCID: PMC9778731 DOI: 10.3390/ijerph192417000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Among different pathomechanisms involved in the development of heart failure, adverse metabolic myocardial remodeling closely related to ineffective energy production, constitutes the fundamental feature of the disease and translates into further progression of both cardiac dysfunction and maladaptations occurring within other organs. Being the component of key enzymatic machineries, iron plays a vital role in energy generation and utilization, hence the interest in whether, by correcting systemic and/or cellular deficiency of this micronutrient, we can influence the energetic efficiency of tissues, including the heart. In this review we summarize current knowledge on disturbed energy metabolism in failing hearts as well as we analyze experimental evidence linking iron deficiency with deranged myocardial energetics.
Collapse
Affiliation(s)
- Michał Tkaczyszyn
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | | | - Weronika Hanna Lis
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| |
Collapse
|
6
|
Alnuwaysir RIS, Hoes MF, van Veldhuisen DJ, van der Meer P, Beverborg NG. Iron Deficiency in Heart Failure: Mechanisms and Pathophysiology. J Clin Med 2021; 11:125. [PMID: 35011874 PMCID: PMC8745653 DOI: 10.3390/jcm11010125] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 12/15/2022] Open
Abstract
Iron is an essential micronutrient for a myriad of physiological processes in the body beyond erythropoiesis. Iron deficiency (ID) is a common comorbidity in patients with heart failure (HF), with a prevalence reaching up to 59% even in non-anaemic patients. ID impairs exercise capacity, reduces the quality of life, increases hospitalisation rate and mortality risk regardless of anaemia. Intravenously correcting ID has emerged as a promising treatment in HF as it has been shown to alleviate symptoms, improve quality of life and exercise capacity and reduce hospitalisations. However, the pathophysiology of ID in HF remains poorly characterised. Recognition of ID in HF triggered more research with the aim to explain how correcting ID improves HF status as well as the underlying causes of ID in the first place. In the past few years, significant progress has been made in understanding iron homeostasis by characterising the role of the iron-regulating hormone hepcidin, the effects of ID on skeletal and cardiac myocytes, kidneys and the immune system. In this review, we summarise the current knowledge and recent advances in the pathophysiology of ID in heart failure, the deleterious systemic and cellular consequences of ID.
Collapse
Affiliation(s)
| | | | | | | | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, University of Groningen, P.O. Box 30.001, 9700 RB Groningen, The Netherlands; (R.I.S.A.); (M.F.H.); (D.J.v.V.); (P.v.d.M.)
| |
Collapse
|
7
|
Potential role for pyruvate kinase M2 in the regulation of murine cardiac glycolytic flux during in vivo chronic hypoxia. Biosci Rep 2021; 41:228626. [PMID: 33973628 PMCID: PMC8173528 DOI: 10.1042/bsr20203170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 02/03/2021] [Accepted: 03/22/2021] [Indexed: 12/22/2022] Open
Abstract
Carbohydrate metabolism in heart failure shares similarities to that following hypoxic exposure, and is thought to maintain energy homoeostasis in the face of reduced O2 availability. As part of these in vivo adaptations during sustained hypoxia, the heart up-regulates and maintains a high glycolytic flux, but the underlying mechanism is still elusive. We followed the cardiac glycolytic responses to a chronic hypoxic (CH) intervention using [5-3H]-glucose labelling in combination with detailed and extensive enzymatic and metabolomic approaches to provide evidence of the underlying mechanism that allows heart survivability. Following 3 weeks of in vivo hypoxia (11% oxygen), murine hearts were isolated and perfused in a retrograde mode with function measured via an intraventricular balloon and glycolytic flux quantified using [5-3H]-glucose labelling. At the end of perfusion, hearts were flash-frozen and central carbon intermediates determined via liquid chromatography tandem mass spectrometry (LC-MS/MS). The maximal activity of glycolytic enzymes considered rate-limiting was assessed enzymatically, and protein abundance was determined using Western blotting. Relative to normoxic hearts, CH increased ex vivo cardiac glycolytic flux 1.7-fold with no effect on cardiac function. CH up-regulated cardiac pyruvate kinase (PK) flux 3.1-fold and cardiac pyruvate kinase muscle isoenzyme M2 (PKM2) protein content 1.4-fold compared with normoxic hearts. CH also augmented cardiac pentose phosphate pathway (PPP) flux, reflected by higher ribose-5-phosphate (R5P) content. These findings support an increase in the covalent (protein expression) and allosteric (flux) control of PKM2 as being central to the sustained up-regulation of the glycolytic flux in the chronically hypoxic heart.
Collapse
|
8
|
Afsar RE, Kanbay M, Ibis A, Afsar B. In-depth review: is hepcidin a marker for the heart and the kidney? Mol Cell Biochem 2021; 476:3365-3381. [PMID: 33942218 DOI: 10.1007/s11010-021-04168-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/21/2021] [Indexed: 12/15/2022]
Abstract
Iron is an essential trace element involved in oxidation-reduction reactions, oxygen transport and storage, and energy metabolism. Iron in excess can be toxic for cells, since iron produces reactive oxygen species and is important for survival of pathogenic microbes. There is a fine-tuning in the regulation of serum iron levels, determined by intestinal absorption, macrophage iron recycling, and mobilization of hepatocyte stores versus iron utilization, primarily by erythroid cells in the bone marrow. Hepcidin is the major regulatory hormone of systemic iron homeostasis and is upregulated during inflammation. Hepcidin metabolism is altered in chronic kidney disease. Ferroportin is an iron export protein and mediates iron release into the circulation from duodenal enterocytes, splenic reticuloendothelial macrophages, and hepatocytes. Systemic iron homeostasis is controlled by the hepcidin-ferroportin axis at the sites of iron entry into the circulation. Hepcidin binds to ferroportin, induces its internalization and intracellular degradation, and thus inhibits iron absorption from enterocytes, and iron release from macrophages and hepatocytes. Recent data suggest that hepcidin, by slowing or preventing the mobilization of iron from macrophages, may promote atherosclerosis and may be associated with increased cardiovascular disease risk. This article reviews the current data regarding the molecular and cellular pathways of systemic and autocrine hepcidin production and seeks the answer to the question whether changes in hepcidin translate into clinical outcomes of all-cause and cardiovascular mortality, and cardiovascular and renal end-points.
Collapse
Affiliation(s)
- Rengin Elsurer Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Mehmet Kanbay
- Department of Nephrology, Faculty of Medicine, Koc University, Istanbul, Turkey
| | - Avsin Ibis
- Department of Nephrology, Afyon Kocatepe Devlet Hastanesi, Afyon, Turkey
| | - Baris Afsar
- Department of Nephrology, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
9
|
Kobak KA, Franczuk P, Schubert J, Dzięgała M, Kasztura M, Tkaczyszyn M, Drozd M, Kosiorek A, Kiczak L, Bania J, Ponikowski P, Jankowska EA. Primary Human Cardiomyocytes and Cardiofibroblasts Treated with Sera from Myocarditis Patients Exhibit an Increased Iron Demand and Complex Changes in the Gene Expression. Cells 2021; 10:cells10040818. [PMID: 33917391 PMCID: PMC8067399 DOI: 10.3390/cells10040818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 04/01/2021] [Indexed: 12/24/2022] Open
Abstract
Cardiac fibroblasts and cardiomyocytes are the main cells involved in the pathophysiology of myocarditis (MCD). These cells are especially sensitive to changes in iron homeostasis, which is extremely important for the optimal maintenance of crucial cellular processes. However, the exact role of iron status in the pathophysiology of MCD remains unknown. We cultured primary human cardiomyocytes (hCM) and cardiofibroblasts (hCF) with sera from acute MCD patients and healthy controls to mimic the effects of systemic inflammation on these cells. Next, we performed an initial small-scale (n = 3 per group) RNA sequencing experiment to investigate the global cellular response to the exposure on sera. In both cell lines, transcriptomic data analysis revealed many alterations in gene expression, which are related to disturbed canonical pathways and the progression of cardiac diseases. Moreover, hCM exhibited changes in the iron homeostasis pathway. To further investigate these alterations in sera-treated cells, we performed a larger-scale (n = 10 for controls, n = 18 for MCD) follow-up study and evaluated the expression of genes involved in iron metabolism. In both cell lines, we demonstrated an increased expression of transferrin receptor 1 (TFR1) and ferritin in MCD serum-treated cells as compared to controls, suggesting increased iron demand. Furthermore, we related TFR1 expression with the clinical profile of patients and showed that greater iron demand in sera-treated cells was associated with higher inflammation score (interleukin 6 (IL-6), C-reactive protein (CRP)) and advanced neurohormonal activation (NT-proBNP) in patients. Collectively, our data suggest that the malfunctioning of cardiomyocytes and cardiofibroblasts in the course of MCD might be related to alterations in the iron homeostasis.
Collapse
Affiliation(s)
- Kamil A. Kobak
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.A.K.); (P.F.); (M.D.); (M.T.); (M.D.)
| | - Paweł Franczuk
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.A.K.); (P.F.); (M.D.); (M.T.); (M.D.)
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (A.K.); (P.P.)
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.S.); (M.K.); (J.B.)
| | - Magdalena Dzięgała
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.A.K.); (P.F.); (M.D.); (M.T.); (M.D.)
| | - Monika Kasztura
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.S.); (M.K.); (J.B.)
| | - Michał Tkaczyszyn
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.A.K.); (P.F.); (M.D.); (M.T.); (M.D.)
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (A.K.); (P.P.)
| | - Marcin Drozd
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.A.K.); (P.F.); (M.D.); (M.T.); (M.D.)
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (A.K.); (P.P.)
| | - Aneta Kosiorek
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (A.K.); (P.P.)
- Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Liliana Kiczak
- Department of Biochemistry and Molecular Biology, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland;
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wroclaw University of Environmental and Life Sciences, 50-375 Wroclaw, Poland; (J.S.); (M.K.); (J.B.)
| | - Piotr Ponikowski
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (A.K.); (P.P.)
- Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
| | - Ewa A. Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland; (K.A.K.); (P.F.); (M.D.); (M.T.); (M.D.)
- Centre for Heart Diseases, University Hospital, 50-556 Wroclaw, Poland; (A.K.); (P.P.)
- Correspondence:
| |
Collapse
|
10
|
Abstract
Iron deficiency (ID) is a common and ominous comorbidity in heart failure (HF) and predicts worse outcomes, independently of the presence of anaemia. Accumulated data from animal models of systemic ID suggest that ID is associated with several functional and structural abnormalities of the heart. However, the exact role of myocardial iron deficiency irrespective of systemic ID and/or anaemia has been elusive. Recently, several transgenic models of cardiac-specific ID have been developed to investigate the influence of ID on cardiac tissue. In this review, we discuss structural and functional cardiac consequences of ID in these models and summarize data from clinical studies. Moreover, the beneficial effects of intravenous iron supplementation are specified.
Collapse
|
11
|
Weidmann H, Bannasch JH, Waldeyer C, Shrivastava A, Appelbaum S, Ojeda-Echevarria FM, Schnabel R, Lackner KJ, Blankenberg S, Zeller T, Karakas M. Iron Metabolism Contributes to Prognosis in Coronary Artery Disease: Prognostic Value of the Soluble Transferrin Receptor Within the AtheroGene Study. J Am Heart Assoc 2020; 9:e015480. [PMID: 32321351 PMCID: PMC7428563 DOI: 10.1161/jaha.119.015480] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background Coronary heart disease is a leading cause of mortality worldwide. Iron deficiency, a frequent comorbidity of coronary heart disease, causes an increased expression of transferrin receptor and soluble transferrin receptor levels (sTfR) levels, while iron repletion returns sTfR levels to the normal physiological range. Recently, sTfR levels were proposed as a potential new marker of iron metabolism in cardiovascular diseases. Therefore, we aimed to evaluate the prognostic value of circulating sTfR levels in a large cohort of patients with coronary heart disease. Methods and Results The disease cohort comprised 3423 subjects who had angiographically documented coronary heart disease and who participated in the AtheroGene study. Serum levels of sTfR were determined at baseline using an automated immunoassay (Roche Cobas Integra 400). Two main outcomes were considered: a combined end point of myocardial infarction and cardiovascular death and cardiovascular death alone. During a median follow‐up of 4.0 years, 10.3% of the patients experienced an end point. In Cox regression analyses for sTfR levels, the hazard ratio (HR) for future cardiovascular death and/or myocardial infarction was 1.27 (95% CI, 1.11–1.44, P<0.001) after adjustment for sex and age. This association remained significant (HR, 1.23; 95% CI, 1.03–1.46, P=0.02) after additional adjustment for body mass index, smoking status, hypertension, diabetes mellitus, dyslipidemia, C‐reactive protein, and surrogates of cardiac function, size of myocardial necrosis (hs‐Tnl), and hemoglobin levels. Conclusions In this large cohort study, sTfR levels were strongly associated with future myocardial infarction and cardiovascular death. This implicates a role for sTfR in secondary cardiovascular risk prediction.
Collapse
Affiliation(s)
- Henri Weidmann
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Johannes H Bannasch
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany
| | - Christoph Waldeyer
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Apurva Shrivastava
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Sebastian Appelbaum
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany
| | | | - Renate Schnabel
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Karl J Lackner
- Department of Laboratory Medicine University Medical Center Johannes Gutenberg University Mainz Mainz Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main Mainz Germany
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Tanja Zeller
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| | - Mahir Karakas
- Department of General and Interventional Cardiology University Heart Center Hamburg Hamburg Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel Hamburg Germany
| |
Collapse
|
12
|
Bensaid S, Fabre C, Fourneau J, Cieniewski-Bernard C. Impact of different methods of induction of cellular hypoxia: focus on protein homeostasis signaling pathways and morphology of C2C12 skeletal muscle cells differentiated into myotubes. J Physiol Biochem 2019; 75:367-377. [PMID: 31267382 DOI: 10.1007/s13105-019-00687-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Hypoxia, occurring in several pathologies, has deleterious effects on skeletal muscle, in particular on protein homeostasis. Different induction methods of hypoxia are commonly used in cellular models to investigate the alterations of muscular function consecutive to hypoxic stress. However, a consensus is not clearly established concerning hypoxia induction methodology. Our aim was to compare oxygen deprivation with chemically induced hypoxia using cobalt chloride (CoCl2) or desferrioxamine (DFO) on C2C12 myotubes which were either cultured in hypoxia chamber at an oxygen level of 4% or treated with CoCl2 or DFO. For each method of hypoxia induction, we determined their impact on muscle cell morphology and on expression or activation status of key signaling proteins of synthesis and degradation pathways. The expression of HIF-1α increased whatever the method of hypoxia induction. Myotube diameter and protein content decreased exclusively for C2C12 myotubes submitted to physiological hypoxia (4% O2) or treated with CoCl2. Results were correlated with a hypophosphorylation of key proteins regulated synthesis pathway (Akt, GSK3-β and P70S6K). Similarly, the phosphorylation of FoxO1 decreased and the autophagy-related LC3-II was overexpressed with 4% O2 and CoCl2 conditions. Our results demonstrated that in vitro oxygen deprivation and the use of mimetic agent such as CoCl2, unlike DFO, induced similar responses on myotube morphology and atrophy/hypertrophy markers. Thus, physiological hypoxia or its artificial induction using CoCl2 can be used to understand finely the molecular changes in skeletal muscle cells and to evaluate new therapeutics for hypoxia-related muscle disorders.
Collapse
Affiliation(s)
- Samir Bensaid
- Team Physical Activity, Muscle, Health, University Lille - EA 7369 - URePSSS, 59000, Lille, France.,Research Pole, CHU Lille, 59000, Lille, France
| | - Claudine Fabre
- Team Physical Activity, Muscle, Health, University Lille - EA 7369 - URePSSS, 59000, Lille, France
| | - Julie Fourneau
- Team Physical Activity, Muscle, Health, University Lille - EA 7369 - URePSSS, 59000, Lille, France
| | | |
Collapse
|
13
|
Ruhe J, Waldeyer C, Ojeda F, Altay A, Schnabel RB, Schäfer S, Lackner KJ, Blankenberg S, Zeller T, Karakas M. Intrinsic Iron Release Is Associated with Lower Mortality in Patients with Stable Coronary Artery Disease-First Report on the Prospective Relevance of Intrinsic Iron Release. Biomolecules 2018; 8:biom8030072. [PMID: 30096922 PMCID: PMC6164542 DOI: 10.3390/biom8030072] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022] Open
Abstract
Intrinsic iron release is discussed to have favorable effects in coronary artery disease (CAD). The aim of this study was to evaluate the prognostic relevance of intrinsic iron release in patients with CAD. Intrinsic iron release was based on a definition including hepcidin and soluble transferrin receptor (sTfR). In a cohort of 811 patients with angiographically documented CAD levels of hepcidin and sTfR were measured at baseline. Systemic body iron release was defined as low levels of hepcidin (<24 ng/mL) and high levels of sTfR (≥2 mg/L). A commercially available ELISA (DRG) was used for measurements of serum hepcidin. Serum sTfR was determined by using an automated immunoassay (). Cardiovascular mortality was the main outcome measure. The criteria of intrinsic iron release were fulfilled in 32.6% of all patients. Significantly lower cardiovascular mortality rates were observed in CAD patients with systemic iron release. After adjustment for body mass index, smoking status, hypertension, diabetes, dyslipidemia, sex, and age, the hazard ratio for future cardiovascular death was 0.41. After an additional adjustment for surrogates of the size of myocardial necrosis (troponin I), anemia (hemoglobin), and cardiac function and heart failure severity (N-terminal pro B-type natriuretic peptide), this association did not change (Hazard ratio 0.37 (95% confidence interval 0.14⁻0.99), p = 0.047). In conclusion, significantly lower cardiovascular mortality rates were observed in CAD patients with intrinsic iron release shown during follow-up.
Collapse
Affiliation(s)
- Julia Ruhe
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
| | - Christoph Waldeyer
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
| | - Francisco Ojeda
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
| | - Alev Altay
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
| | - Renate B Schnabel
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, 20246 Hamburg, Germany.
| | - Sarina Schäfer
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, 20246 Hamburg, Germany.
| | - Karl J Lackner
- German Center for Cardiovascular Research (DZHK), Partner Site Rhein-Main, 55131 Mainz, Germany.
- Department of Laboratory Medicine, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| | - Stefan Blankenberg
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, 20246 Hamburg, Germany.
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, 20246 Hamburg, Germany.
| | - Mahir Karakas
- Department of General and Interventional Cardiology, University Heart Center Hamburg, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, 20246 Hamburg, Germany.
| |
Collapse
|
14
|
Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome. Biomolecules 2018; 8:biom8030060. [PMID: 30037035 PMCID: PMC6163749 DOI: 10.3390/biom8030060] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/09/2018] [Accepted: 07/16/2018] [Indexed: 02/08/2023] Open
Abstract
Acute myocardial infarction remains a leading cause of morbidity and mortality. While iron deficient heart failure patients are at increased risk of future cardiovascular events and see improvement with intravenous supplementation, the clinical relevance of iron deficiency in acute coronary syndrome remains unclear. We aimed to evaluate the prognostic value of iron deficiency in the acute coronary syndrome (ACS). Levels of ferritin, iron, and transferrin were measured at baseline in 836 patients with ACS. A total of 29.1% was categorized as iron deficient. The prevalence of iron deficiency was clearly higher in women (42.8%), and in patients with anemia (42.5%). During a median follow-up of 4.0 years, 111 subjects (13.3%) experienced non-fatal myocardial infarction (MI) and cardiovascular mortality as combined endpoint. Iron deficiency strongly predicted non-fatal MI and cardiovascular mortality with a hazard ratio (HR) of 1.52 (95% confidence interval (CI) 1.03-2.26; p = 0.037) adjusted for age, sex, hypertension, smoking status, diabetes, hyperlipidemia, body-mass-index (BMI) This association remained significant (HR 1.73 (95% CI 1.07⁻2.81; p = 0.026)) after an additional adjustment for surrogates of cardiac function and heart failure severity (N-terminal pro B-type natriuretic peptide, NT-proBNP), for the size of myocardial necrosis (troponin), and for anemia (hemoglobin). Survival analyses for cardiovascular mortality and MI provided further evidence for the prognostic relevance of iron deficiency (HR 1.50 (95% CI 1.02⁻2.20)). Our data showed that iron deficiency is strongly associated with adverse outcome in acute coronary syndrome.
Collapse
|
15
|
Kobak K, Kasztura M, Dziegala M, Bania J, Kapuśniak V, Banasiak W, Ponikowski P, Jankowska EA. Iron limitation promotes the atrophy of skeletal myocytes, whereas iron supplementation prevents this process in the hypoxic conditions. Int J Mol Med 2018; 41:2678-2686. [PMID: 29436580 PMCID: PMC5846664 DOI: 10.3892/ijmm.2018.3481] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 01/18/2018] [Indexed: 12/23/2022] Open
Abstract
There is clinical evidence that patients with heart failure and concomitant iron deficiency have increased skeletal muscle fatigability and impaired exercise tolerance. It was expected that a skeletal muscle cell line subjected to different degrees of iron availability and/or concomitant hypoxia would demonstrate changes in cell morphology and in the expression of atrophy markers. L6G8C5 rat skeletal myocytes were cultured in normoxia or hypoxia at optimal, reduced or increased iron concentrations. Experiments were performed to evaluate the iron content in cells, cell morphology, and the expression of muscle specific atrophy markers [Atrogin1 and muscle-specific RING-finger 1 (MuRF1)], a gene associated with the atrophy/hypertrophy balance [mothers against decapentaplegic homolog 4 (SMAD4)] and a muscle class-III intermediate filament protein (Desmin) at the mRNA and protein level. Hypoxic treatment caused, as compared to normoxic conditions, an increase in the expression of Atrogin-1 (P<0.001). Iron-deficient cells exhibited morphological abnormalities and demonstrated a significant increase in the expression of Atrogin-1 (P<0.05) and MuRF1 (P<0.05) both in normoxia and hypoxia, which indicated activation of the ubiquitin proteasome pathway associated with protein degradation during muscle atrophy. Depleted iron in cell culture combined with hypoxia also induced a decrease in SMAD4 expression (P<0.001) suggesting modifications leading to atrophy. In contrast, cells cultured in a medium enriched with iron during hypoxia exhibited inverse changes in the expression of atrophy markers (both P<0.05). Desmin was upregulated in cells subjected to both iron depletion and iron excess in normoxia and hypoxia (all P<0.05), but the greatest augmentation of mRNA expression occurred when iron depletion was combined with hypoxia. Notably, in hypoxia, an increased expression of Atrogin-1 and MuRF1 was associated with an increased expression of transferrin receptor 1, reflecting intracellular iron demand (R=0.76, P<0.01; R=0.86, P<0.01). Hypoxia and iron deficiency when combined exhibited the most detrimental impact on skeletal myocytes, especially in the context of muscle atrophy markers. Conversely, iron supplementation in in vitro conditions acted in a protective manner on these cells.
Collapse
Affiliation(s)
- Kamil Kobak
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 50‑981 Wrocław, Poland
| | - Monika Kasztura
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 50‑981 Wrocław, Poland
| | - Magdalena Dziegala
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 50‑981 Wrocław, Poland
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health, Wroclaw University of Environmental and Life Sciences, 50‑375 Wroclaw, Poland
| | - Violetta Kapuśniak
- Department of Histology and Embryology, Wroclaw University of Environmental and Life Sciences, 50‑375 Wroclaw, Poland
| | - Waldemar Banasiak
- Centre for Heart Diseases, Military Hospital, 50‑981 Wrocław, Poland
| | - Piotr Ponikowski
- Centre for Heart Diseases, Military Hospital, 50‑981 Wrocław, Poland
| | - Ewa A Jankowska
- Laboratory for Applied Research on Cardiovascular System, Department of Heart Diseases, Wrocław Medical University, 50‑981 Wrocław, Poland
| |
Collapse
|