1
|
Lin V, Tian C, Wahlster S, Castillo-Pinto C, Mainali S, Johnson NJ. Temperature Control in Acute Brain Injury: An Update. Semin Neurol 2024; 44:308-323. [PMID: 38593854 DOI: 10.1055/s-0044-1785647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Temperature control in severe acute brain injury (SABI) is a key component of acute management. This manuscript delves into the complex role of temperature management in SABI, encompassing conditions like traumatic brain injury (TBI), acute ischemic stroke (AIS), intracerebral hemorrhage (ICH), aneurysmal subarachnoid hemorrhage (aSAH), and hypoxemic/ischemic brain injury following cardiac arrest. Fever is a common complication in SABI and is linked to worse neurological outcomes due to increased inflammatory responses and intracranial pressure (ICP). Temperature management, particularly hypothermic temperature control (HTC), appears to mitigate these adverse effects primarily by reducing cerebral metabolic demand and dampening inflammatory pathways. However, the effectiveness of HTC varies across different SABI conditions. In the context of post-cardiac arrest, the impact of HTC on neurological outcomes has shown inconsistent results. In cases of TBI, HTC seems promising for reducing ICP, but its influence on long-term outcomes remains uncertain. For AIS, clinical trials have yet to conclusively demonstrate the benefits of HTC, despite encouraging preclinical evidence. This variability in efficacy is also observed in ICH, aSAH, bacterial meningitis, and status epilepticus. In pediatric and neonatal populations, while HTC shows significant benefits in hypoxic-ischemic encephalopathy, its effectiveness in other brain injuries is mixed. Although the theoretical basis for employing temperature control, especially HTC, is strong, the clinical outcomes differ among various SABI subtypes. The current consensus indicates that fever prevention is beneficial across the board, but the application and effectiveness of HTC are more nuanced, underscoring the need for further research to establish optimal temperature management strategies. Here we provide an overview of the clinical evidence surrounding the use of temperature control in various types of SABI.
Collapse
Affiliation(s)
- Victor Lin
- Department of Neurology, University of Washington, Seattle, Washington
| | - Cindy Tian
- Department of Emergency Medicine, University of Washington, Seattle, Washington
| | - Sarah Wahlster
- Department of Neurology, University of Washington, Seattle, Washington
- Department of Neurosurgery, University of Washington, Seattle, Washington
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, Washington
| | | | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Nicholas J Johnson
- Department of Emergency Medicine, University of Washington, Seattle, Washington
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, University of Washington, Seattle, Washington
| |
Collapse
|
2
|
Rhim JK, Park JJ, Kim H, Jeon JP. Early and Prolonged Mild Hypothermia in Patients with Poor-Grade Subarachnoid Hemorrhage: A Pilot Study. Ther Hypothermia Temp Manag 2022; 12:229-234. [PMID: 36130134 DOI: 10.1089/ther.2022.0013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We assessed the feasibility of therapeutic early and prolonged mild hypothermia (MH) in patients with poor-grade subarachnoid hemorrhage (SAH). A retrospective pilot study was conducted for poor-grade SAH patients at two university hospitals from March 2015 to December 2018 who had received MH immediately after coil embolization and maintained a target temperature of 34-35°C for 5 days. A matched controlled design at a 1:2 ratio was used to compare MH therapy outcomes. The primary goal was to assess the two groups' severe functional outcomes at discharge defined as a modified Rankin Scale score of 4-6. The secondary aim was to assess mortality and severe vasospasm depending upon MH. A binary logistic regression analysis was performed to identify relevant risk factors for the outcomes. A total of 54 patients (18 with MH treatment and 36 without MH treatment) were included. Severe functional outcome was significantly decreased in poor-grade SAH patients with MH (n = 7, 38.9%) than those without MH (n = 25, 69.4%; p = 0.031). In patients treated with MH, mortality and severe vasospasm tended to be less common, although the difference was not statistically significant. A binary logistic regression analysis revealed that early and prolonged MH (odds ratio [OR] = 0.156, 95% confidence intervals [CI]: 0.037-0.644) and severe vasospasm (OR = 5.593, 95% CI: 1.372-22.812) were risk factors for severe functional outcomes. This study shows potential therapeutic effect of early and prolonged MH treatment in poor-grade SAH patients. A randomized controlled study with a large number of patients is warranted in the future.
Collapse
Affiliation(s)
- Jong-Kook Rhim
- Department of Neurosurgery, Jeju National University College of Medicine, Jeju, Republic of Korea
| | - Jeong Jin Park
- Department of Neurology, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Heungcheol Kim
- Department of Radiology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Republic of Korea
| |
Collapse
|
3
|
Dai H, Zhou Y, Lu Y, Zhang X, Zhuang Z, Gao Y, Liu G, Chen C, Ma J, Li W, Hang C. Decreased Expression of CIRP Induced by Therapeutic Hypothermia Correlates with Reduced Early Brain Injury after Subarachnoid Hemorrhage. J Clin Med 2022; 11:jcm11123411. [PMID: 35743480 PMCID: PMC9225369 DOI: 10.3390/jcm11123411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/16/2022] Open
Abstract
Early brain injury is considered to be a primary reason for the poor prognosis of patients suffering from subarachnoid hemorrhage (SAH). Due to its pro-inflammatory activity, cold-inducible RNA-binding protein (CIRP) has been implicated in the ischemic brain insult, but its possible interplay with hypothermia in SAH treatment remains to be evaluated. One-hundred and thirty-eight Sprague-Dawley rats (300–350 g males) were randomly allocated into the following groups: sham-operated (Sham); SAH; and SAH + hypothermia (SAH + H), each comprised of 46 animals. After treatments, the brain tissues of the three groups were randomly collected after 12 h, 1 d, 3 d, and 7 d, and the expression levels of the CIRP and mitochondrial apoptosis pathway-related proteins Bax, Bcl-2, caspase-9, caspase-3, and cytochrome c measured using Western blotting and real-time PCR. Brain damage was assessed by TUNEL and Nissl staining, the electron microscopy of brain tissue slices as well as functional rotarod tests. Expression of CIRP, Bax, caspase-9, caspase-3, and cytochrome c as well as reduced motor function incidence were higher in the SAH group, particularly during the first 3 d after SAH induction. Hypothermia blunted these SAH responses and apoptosis, thereby indicating reduced inflammatory signaling and less brain cell injury in the early period after SAH. Hypothermia treatment was found to effectively protect the brain tissue from early SAH injury in a rat model and its further evaluation as a therapeutic modality in SAH patients requires further study.
Collapse
Affiliation(s)
- Haibin Dai
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Yan Zhou
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Yue Lu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Xiangsheng Zhang
- Department of Neurosurgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China;
| | - Zong Zhuang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Yongyue Gao
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Guangjie Liu
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Chunlei Chen
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Jin Ma
- Department of Medical Equipment, School of Aerospace Medicine, Air Force Medical University, Xi’an 710032, China
- Correspondence: (J.M.); (C.H.); Tel.: +86-29-84774825 (J.M.); +86-25-83106666 (C.H.)
| | - Wei Li
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
| | - Chunhua Hang
- Department of Neurosurgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China; (H.D.); (Y.Z.); (Y.L.); (Z.Z.); (Y.G.); (G.L.); (C.C.); (W.L.)
- Correspondence: (J.M.); (C.H.); Tel.: +86-29-84774825 (J.M.); +86-25-83106666 (C.H.)
| |
Collapse
|
4
|
Xu H, Stamova B, Ander BP, Waldau B, Jickling GC, Sharp FR, Ko NU. mRNA Expression Profiles from Whole Blood Associated with Vasospasm in Patients with Subarachnoid Hemorrhage. Neurocrit Care 2021; 33:82-89. [PMID: 31595394 PMCID: PMC7392923 DOI: 10.1007/s12028-019-00861-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Background Though there are many biomarker studies of plasma and serum in patients with aneurysmal subarachnoid hemorrhage (SAH), few have examined blood cells that might contribute to vasospasm. In this study, we evaluated inflammatory and prothrombotic pathways by examining mRNA expression in whole blood of SAH patients with and without vasospasm. Methods Adult SAH patients with vasospasm (n = 29) and without vasospasm (n = 21) were matched for sex, race/ethnicity, and aneurysm treatment method. Diagnosis of vasospasm was made by angiography. mRNA expression was measured by Affymetrix Human Exon 1.0 ST Arrays. SAH patients with vasospasm were compared to those without vasospasm by ANCOVA to identify differential gene, exon, and alternatively spliced transcript expression. Analyses were adjusted for age, batch, and time of blood draw after SAH. Results At the gene level, there were 259 differentially expressed genes between SAH patients with vasospasm compared to patients without (false discovery rate < 0.05, |fold change| ≥ 1.2). At the exon level, 1210 exons representing 1093 genes were differentially regulated between the two groups (P < 0.005, ≥ 1.2 |fold change|). Principal components analysis segregated SAH patients with and without vasospasm. Signaling pathways for the 1093 vasospasm-related genes included adrenergic, P2Y, ET-1, NO, sildenafil, renin–angiotensin, thrombin, CCR3, CXCR4, MIF, fMLP, PKA, PKC, CRH, PPARα/RXRα, and calcium. Genes predicted to be alternatively spliced included IL23A, RSU1, PAQR6, and TRIP6. Conclusions This is the first study to demonstrate that mRNA expression in whole blood distinguishes SAH patients with vasospasm from those without vasospasm and supports a role of coagulation and immune systems in vasospasm. Electronic supplementary material The online version of this article (10.1007/s12028-019-00861-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huichun Xu
- Department of Medicine, University of Maryland, College Park, USA
| | - Boryana Stamova
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Bradley P Ander
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA
| | - Ben Waldau
- Neurosurgery, University of California at Davis, Sacramento, USA
| | - Glen C Jickling
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.,Department of Neurology, University of Alberta, Edmonton, Canada
| | - Frank R Sharp
- Department of Neurology, University of California at Davis, 2805 50th St., Sacramento, CA, 95817, USA.
| | - Nerissa U Ko
- Department of Neurology, University of California at San Francisco, San Francisco, USA
| |
Collapse
|
5
|
Ning B, Li Z, Ning L, Wu J, Chen X, Jiang P, Lin F, Zhao B. MSK1 downregulation is involved in inflammatory responses following subarachnoid hemorrhage in rats. Exp Ther Med 2021; 21:364. [PMID: 33732337 PMCID: PMC7903447 DOI: 10.3892/etm.2021.9795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 01/02/2020] [Indexed: 11/05/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is a life-threatening neurological disease. Recently, inflammatory factors have been confirmed to be responsible for the brain damage associated with SAH. Therefore, studying the post-SAH inflammatory reaction may clarify the mechanism of SAH. Mitogen and stress-activated protein kinase 1 (MSK1) causes the phosphorylation of NF-κB and regulates the activity of pro-inflammatory transcription factors. The present study aimed to identify the potential role of MSK1 in inflammation and brain damage development following SAH. A cisterna magna blood injection model was established in Sprague-Dawley rats. Hematoxylin and eosin staining, reverse transcription-quantitative polymerase chain reaction assays and double immunofluorescence staining were used to analyze the role of MSK1, IL-1β and TNF-α in the inflammatory process after SAH. In a model of lipopolysaccharide-induced astrocyte inflammation, the effect of overexpressing MSK1 overexpression was analyzed by western blot analysis. The results demonstrated that MSK1 expression were negatively correlated with TNF-α and IL-1β expression levels, and reached peak levels 2 days after TNF-α and IL-1β. The double immunofluorescence staining results showed that the expression of MSK1 was in the same plane of view as TNF-α and IL-1β in the brain cortex. Furthermore, the in vitro studies indicated that the overexpression of MSK1 inhibited the expression of TNF-α and IL-1β following LPS challenge. These results imply that MSK1 may be involved in the inflammatory reaction following SAH, and may potentially serve as a negative regulator of inflammation.
Collapse
Affiliation(s)
- Bo Ning
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Neurosurgery, Guangzhou Red Cross Hospital, Jinan University, Guangzhou, Guangdong 510220, P.R. China
| | - Zhen Li
- Department of Neurosurgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250021, P.R. China
- Department of Neurosurgery, Tai'an Central Hospital, Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| | - Lei Ning
- Department of Medical Records, Affiliated Hospital of Taishan Medical University, Taishan Medical University, Tai'an, Shandong 271000, P.R. China
| | - Jun Wu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Pengjun Jiang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Fuxin Lin
- Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian 350005, P.R. China
| | - Bing Zhao
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China
| |
Collapse
|
6
|
Peretti D, Smith HL, Verity N, Humoud I, de Weerd L, Swinden DP, Hayes J, Mallucci GR. TrkB signaling regulates the cold-shock protein RBM3-mediated neuroprotection. Life Sci Alliance 2021; 4:4/4/e202000884. [PMID: 33563652 PMCID: PMC7893816 DOI: 10.26508/lsa.202000884] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 02/02/2023] Open
Abstract
Increasing levels of the cold-shock protein, RNA-binding motif 3 (RBM3), either through cooling or by ectopic over-expression, prevents synapse and neuronal loss in mouse models of neurodegeneration. To exploit this process therapeutically requires an understanding of mechanisms controlling cold-induced RBM3 expression. Here, we show that cooling increases RBM3 through activation of TrkB via PLCγ1 and pCREB signaling. RBM3, in turn, has a hitherto unrecognized negative feedback on TrkB-induced ERK activation through induction of its specific phosphatase, DUSP6. Thus, RBM3 mediates structural plasticity through a distinct, non-canonical activation of TrkB signaling, which is abolished in RBM3-null neurons. Both genetic reduction and pharmacological antagonism of TrkB and its downstream mediators abrogate cooling-induced RBM3 induction and prevent structural plasticity, whereas TrkB inhibition similarly prevents RBM3 induction and the neuroprotective effects of cooling in prion-diseased mice. Conversely, TrkB agonism induces RBM3 without cooling, preventing synapse loss and neurodegeneration. TrkB signaling is, therefore, necessary for the induction of RBM3 and related neuroprotective effects and provides a target by which RBM3-mediated synapse-regenerative therapies in neurodegenerative disorders can be used therapeutically without the need for inducing hypothermia.
Collapse
Affiliation(s)
- Diego Peretti
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Heather L Smith
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Nicholas Verity
- MRC Toxicology Unit at the University of Cambridge, Leicester, UK
| | - Ibrahim Humoud
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Lis de Weerd
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Dean P Swinden
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Joseph Hayes
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| | - Giovanna R Mallucci
- UK Dementia Research Institute at the University of Cambridge and Department of Clinical Neurosciences, Island Research Building, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
7
|
Wang T, Zhang J, Li P, Ding Y, Tang J, Chen G, Zhang JH. NT-4 attenuates neuroinflammation via TrkB/PI3K/FoxO1 pathway after germinal matrix hemorrhage in neonatal rats. J Neuroinflammation 2020; 17:158. [PMID: 32416727 PMCID: PMC7229625 DOI: 10.1186/s12974-020-01835-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 05/03/2020] [Indexed: 01/08/2023] Open
Abstract
Background Neuroinflammation plays an important role in pathogenesis of germinal matrix hemorrhage (GMH). Neurotrophin-4 (NT-4) is a member of the neurotrophin family and interacts with the tropomyosin receptor kinase B (TrkB). NT-4 has been shown to confer neuroprotective effects following cerebral ischemia. We aimed to investigate the neuroprotective function of NT-4-TrkB signaling, as well as its downstream signaling cascade phosphatidylinositol-3-kinases (PI3K)/protein kinase B (Akt)/forkhead box protein O1 (FoxO1), following GMH in neonatal rats. Methods GMH was induced by intraparenchymal injection of bacterial collagenase (0.3 U) in P7 rat pups. A total of 163 pups were used in this study. Recombinant human NT-4 was administered intranasally at 1 h after the collagenase injection. The selective TrkB antagonist ANA-12, selective PI3K inhibitor LY294002, and FoxO1 activating CRISPR were administered intracerebroventricularly at 24 h prior to NT-4 treatment to investigate the underlying mechanism. Short-term and long-term neurobehavioral assessments, immunofluorescence staining, Nissl’s staining, and Western blot were performed. Results Expression of phosphorylated TrkB increased after GMH, reaching the peak level at day 3 after hemorrhage. TrkB receptors were observed on neurons, microglia, and astrocytes. The administration of rh-NT-4 induced phosphorylation of TrkB, expression of PI3K, and phosphorylation of Akt. Meanwhile, it decreased FoxO1 and IL-6 levels. Selective inhibition of TrkB/PI3K/Akt signaling in microglia increased the expression levels of FoxO1 and pro-inflammatory cytokines. FoxO1 activating CRISPR increased the expression of IL-6, suggesting that FoxO1 might be a potential inducer of pro-inflammatory factors. These results suggested that PI3K/Akt/FoxO1 signaling may be the downstream pathway of activation of TrkB. The rat pups treated with rh-NT-4 performed better than vehicle-treated animals in both short-term and long-term behavioral tests. Conclusion These data showed that rh-NT-4 reduced the expression levels of pro-inflammatory cytokines, improved neurological function, attenuated neuroinflammation, and thereby mitigated post-hemorrhagic hydrocephalus after GMH by TrkB/PI3K/Akt/FoxO1 pathway. These results indicated that rh-NT-4 could be a promising therapeutic strategy to ameliorate neuroinflammation and hydrocephalus after GMH or other similar brain injuries.
Collapse
Affiliation(s)
- Tianyi Wang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Junyi Zhang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, 11041 Campus Street, Loma Linda, CA, 92350, USA.,Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Peng Li
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Yan Ding
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Jiping Tang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, 11041 Campus Street, Loma Linda, CA, 92350, USA
| | - Gang Chen
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - John H Zhang
- Department of Physiology and Pharmacology, Loma Linda University, School of Medicine, 11041 Campus Street, Loma Linda, CA, 92350, USA.
| |
Collapse
|
8
|
Okazaki T, Kuroda Y. Aneurysmal subarachnoid hemorrhage: intensive care for improving neurological outcome. J Intensive Care 2018; 6:28. [PMID: 29760928 PMCID: PMC5941608 DOI: 10.1186/s40560-018-0297-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/29/2018] [Indexed: 12/18/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage is a life-threatening disease requiring neurocritical care. Delayed cerebral ischemia is a well-known complication that contributes to unfavorable neurological outcomes. Cerebral vasospasm has been thought to be the main cause of delayed cerebral ischemia, and although several studies were able to decrease cerebral vasospasm, none showed improved neurological outcomes. Our target is not cerebral vasospasm but improving neurological outcomes. The purpose of this review is to discuss what intensivists should know and can do to improve clinical outcomes in subarachnoid hemorrhage patients. Main body of the abstract Delayed cerebral ischemia is thought to be due to not only vasospasm but also multifactorial mechanisms. Additionally, the concept of early brain injury, which occurs within the first 72 h after the hemorrhage, has become an important concern. Increasing sympathetic activity after the hemorrhage is associated with cardiopulmonary complications and poor outcomes. Serum lactate measurement may be a valuable marker reflecting the severity of sympathetic activity. The transpulmonary thermodilution method will bring about an advanced understanding of hemodynamic management. Fever is a well-recognized symptom and targeted temperature management is an anticipated intervention. To avoid hyperglycemia and hypoglycemia, performing moderate glucose control and minimizing glucose variability are important concepts in glycemic management, but the optimal target range remains unknown. Dysnatremia seems to be associated with negative outcomes. It is not clear yet that maintaining normonatremia actively improves neurological outcomes. Optimal duration of intensive care management has not been determined. Short conclusion Although we have an advanced understanding of the pathophysiology and clinical characteristics of subarachnoid hemorrhage, there are many controversies in the intensive care unit management of subarachnoid hemorrhage. With an awareness of not only delayed cerebral ischemia but also early brain injury, more attention should be given to various aspects to improve neurological outcomes.
Collapse
Affiliation(s)
- Tomoya Okazaki
- 1Emergency Medical Center, Kagawa University Hospital, 1750-1 Ikenobe, Miki, Kita, Kagawa 761-0793 Japan
| | - Yasuhiro Kuroda
- 2Department of Emergency, Disaster, and Critical Care Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa 761-0793 Japan
| |
Collapse
|
9
|
Singh DP, Barani Lonbani Z, Woodruff MA, Parker TJ, Steck R, Peake JM. Effects of Topical Icing on Inflammation, Angiogenesis, Revascularization, and Myofiber Regeneration in Skeletal Muscle Following Contusion Injury. Front Physiol 2017; 8:93. [PMID: 28326040 PMCID: PMC5339266 DOI: 10.3389/fphys.2017.00093] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Contusion injuries in skeletal muscle commonly occur in contact sport and vehicular and industrial workplace accidents. Icing has traditionally been used to treat such injuries under the premise that it alleviates pain, reduces tissue metabolism, and modifies vascular responses to decrease swelling. Previous research has examined the effects of icing on inflammation and microcirculatory dynamics following muscle injury. However, whether icing influences angiogenesis, collateral vessel growth, or myofiber regeneration remains unknown. We compared the effects of icing vs. a sham treatment on the presence of neutrophils and macrophages; expression of CD34, von Willebrands factor (vWF), vascular endothelial growth factor (VEGF), and nestin; vessel volume; capillary density; and myofiber regeneration in skeletal after muscle contusion injury in rats. Muscle tissue was collected 1, 3, 7, and 28 d after injury. Compared with uninjured rats, muscles in rats that sustained the contusion injury exhibited major necrosis, inflammation, and increased expression of CD34, vWF, VEGF, and nestin. Compared with the sham treatment, icing attenuated and/or delayed neutrophil and macrophage infiltration; the expression of vWF, VEGF, and nestin; and the change in vessel volume within muscle in the first 7 d after injury (P < 0.05). By contrast, icing did not influence capillary density in muscle 28 d after injury (P = 0.59). The percentage of immature myofibers relative to the total number of fibers was greater in the icing group than in the sham group 28 d after injury (P = 0.026), but myofiber cross-sectional area did not differ between groups after 7 d (P = 0.35) and 28 d (P = 0.30). In conclusion, although icing disrupted inflammation and some aspects of angiogenesis/revascularization, these effects did not result in substantial differences in capillary density or muscle growth.
Collapse
Affiliation(s)
- Daniel P Singh
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Zohreh Barani Lonbani
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Maria A Woodruff
- Biofabrication and Tissue Morphology Group, Institute of Health and Biomedical Innovation, Queensland University of Technology Brisbane, QLD, Australia
| | - Tony J Parker
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Roland Steck
- Medical Engineering Research Facility, Queensland University of Technology Brisbane, QLD, Australia
| | - Jonathan M Peake
- Tissue Repair and Regeneration Group, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia; School of Biomedical Sciences, Queensland University of TechnologyBrisbane, QLD, Australia
| |
Collapse
|