1
|
Shin JJ, Suk K, Lee WH. LncRNA BRE-AS1 regulates the JAK2/STAT3-mediated inflammatory activation via the miR-30b-5p/SOC3 axis in THP-1 cells. Sci Rep 2024; 14:25726. [PMID: 39468152 PMCID: PMC11519362 DOI: 10.1038/s41598-024-77265-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators in numerous biological processes, including macrophage-mediated inflammatory responses, which play a critical role in the progress of diverse diseases. This study focuses on the regulatory function of lncRNA brain and reproductive organ-expressed protein (BRE) antisense RNA 1 (BRE-AS1) in modulating the inflammatory activation of monocytes/macrophages. Employing the THP-1 cell line as a model, we demonstrate that lipopolysaccharide (LPS) treatment significantly upregulates BRE-AS1 expression. Notably, specific knockdown of BRE-AS1 via siRNA transfection enhances LPS-induced expression of interleukin (IL)-6 and IL-1β, while not affecting tumor necrosis factor (TNF)-α levels. This selective augmentation of pro-inflammatory cytokine production coincides with increased phosphorylation of Janus kinase (JAK)2 and signal transducer and activator of transcription (STAT)3. Furthermore, BRE-AS1 suppression results in the downregulation of suppressor of cytokine signaling (SOCS)3, an established inhibitor of the JAK2/STAT3 pathway. Bioinformatics analysis identified binding sites for miR-30b-5p on both BRE-AS1 and SOCS3 mRNA. Intervention with a miR-30b-5p inhibitor and a synthetic RNA fragment that represents the miR-30b-5p binding site on BRE-AS1 attenuates the pro-inflammatory effects of BRE-AS1 knockdown. Conversely, a miR-30b-5p mimic replicated the BRE-AS1 attenuation outcomes. Our findings elucidate the role of lncRNA BRE-AS1 in modulating inflammatory activation in THP-1 cells via the miR-30b-5p/SOCS3/JAK2/STAT3 signaling pathway, proposing that manipulation of macrophage BRE-AS1 activity may offer a novel therapeutic avenue in diseases characterized by macrophage-driven pathogenesis.
Collapse
Affiliation(s)
- Jae-Joon Shin
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
2
|
Li H, Ren C, Lu J, Xu S, Gong X, Zhang W, Yan X, Ye J, Qin P, Liu Y, Li Y, Zhang Y, Fang F. Knockdown of lncRNA Meg3 delays the onset of puberty in female rats. Theriogenology 2023; 207:72-81. [PMID: 37269598 DOI: 10.1016/j.theriogenology.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/05/2023]
Abstract
This study investigated how lncRNA Meg3 affects the onset of puberty in female rats. We determined Meg3 expression in the hypothalamus-pituitary-ovary axis of female rats at the infancy, prepubertal, pubertal, and adult life stages, using quantitative reverse transcription polymerase chain reaction (qRT-PCR). We also assessed the effects of Meg3 knockdown on the expression levels of puberty-related genes and Wnt/β-catenin proteins in the hypothalamus, time of puberty onset, levels of reproductive genes and hormones, and ovarian morphology in female rats. Meg3 expression in the ovary varied significantly between prepuberty and puberty (P < 0.01). Meg3 knockdown decreased the expression of Gnrh, and Kiss1 mRNA (P < 0.05) and increased the expression of Wnt (P < 0.01) and β-catenin proteins (P < 0.05) in the hypothalamic cells. Onset of puberty in Meg3 knockdown rats was delayed compared to the control group (P < 0.05). Meg3 knockdown decreased Gnrh mRNA levels (P < 0.05) and increased Rfrp-3 mRNA levels (P < 0.05) in the hypothalamus. The serum concentrations of progesterone (P4) and estradiol (E2) of Meg3 knockdown rats were lower than those in the control animals (P < 0.05). Higher longitudinal diameter and ovary weight were found in Meg3 knockdown rats (P < 0.05). These findings suggest that Meg3 regulates the expression of Gnrh, Kiss-1 mRNA and Wnt/β-catenin proteins in the hypothalamic cells, and Gnrh, Rfrp-3 mRNA of the hypothalamus and the serum concentration of P4 and E2, and its knockdown delays the onset of puberty in female rats.
Collapse
Affiliation(s)
- Hailing Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Chunhuan Ren
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Juntai Lu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Shuangshuang Xu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China
| | - Xinbao Gong
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Wei Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Xu Yan
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Jing Ye
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ping Qin
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Ya Liu
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunsheng Li
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Yunhai Zhang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China
| | - Fugui Fang
- Department of Animal Veterinary Science, College of Animal Science and Technology, Anhui Agricultural University, 130 Changjiang West Road, Hefei, Anhui, 230036, China; Anhui Province Key Laboratory of Local Livestock and Poultry, Genetical Resource Conservation and Breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, Anhui, 230036, China.
| |
Collapse
|
3
|
Lv Z, Lv Z, Song L, Zhang Q, Zhu S. Role of lncRNAs in the pathogenic mechanism of human decreased ovarian reserve. Front Genet 2023; 14:1056061. [PMID: 36845376 PMCID: PMC9944763 DOI: 10.3389/fgene.2023.1056061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
Decreased ovarian reserve (DOR) is defined as a decrease in the quality and quantity of oocytes, which reduces ovarian endocrine function and female fertility. The impaired follicular development and accelerated follicle atresia lead to a decrease in the number of follicles, while the decline of oocyte quality is related to the disorder of DNA damage-repair, oxidative stress, and the dysfunction of mitochondria. Although the mechanism of DOR is still unclear, recent studies have found that long non-coding RNA (lncRNA) as a group of functional RNA molecules participate in the regulation of ovarian function, especially in the differentiation, proliferation and apoptosis of granulosa cells in the ovary. LncRNAs participate in the occurrence of DOR by affecting follicular development and atresia, the synthesis and secretion of ovarian hormones. This review summarizes current research on lncRNAs associated with DOR and reveals the potential underlying mechanisms. The present study suggests that lncRNAs could be considered as prognostic markers and treatment targets for DOR.
Collapse
Affiliation(s)
- Zhexi Lv
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zekai Lv
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Shaomi Zhu
- School of Medical and Life Sciences/Affiliated Reproductive and Women-Children Hospital, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,*Correspondence: Shaomi Zhu,
| |
Collapse
|
4
|
Li M, Liu S, Huang W, Zhang J. Physiological and pathological functions of βB2-crystallins in multiple organs: a systematic review. Aging (Albany NY) 2021; 13:15674-15687. [PMID: 34118792 PMCID: PMC8221336 DOI: 10.18632/aging.203147] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Crystallins, the major constituent proteins of mammalian lenses, are significant not only for the maintenance of eye lens stability, transparency, and refraction, but also fulfill various physiopathological functions in extraocular tissues. βB2-crystallin, for example, is a multifunctional protein expressed in the human retina, brain, testis, ovary, and multiple tumors. Mutations in the βB2 crystallin gene or denaturation of βB2-crystallin protein are associated with cataracts, ocular pathologies, and psychiatric disorders. A prominent role for βB2-crystallins in axonal growth and regeneration, as well as in dendritic outgrowth, has been demonstrated after optic nerve injury. Studies in βB2-crystallin-null mice revealed morphological and functional abnormalities in testis and ovaries, indicating βB2-crystallin contributes to male and female fertility in mice. Interestingly, although pathogenic significance remains obscure, several studies identified a clear correlation between βB2 crystallin expression and the prognosis of patients with breast cancer, colorectal cancer, prostate cancer, renal cell carcinoma, and glioblastoma in the African American population. This review summarizes the physiological and pathological functions of βB2-crystallin in the eye and other organs and tissues and discusses findings related to the expression and potential role of βB2-crystallin in tumors.
Collapse
Affiliation(s)
- Meihui Li
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| | - Shengnan Liu
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| | - Wei Huang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| | - Junjie Zhang
- Department of Obstetrics and Gynecology, Changhai Hospital, Naval Military Medical University, Yangpu, Shanghai 200433, China
| |
Collapse
|
5
|
Long noncoding RNAs profiling in ovary during laying and nesting in Muscovy ducks (Cairina moschata). Anim Reprod Sci 2021; 230:106762. [PMID: 34022609 DOI: 10.1016/j.anireprosci.2021.106762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/11/2022]
Abstract
There are recent reports of the important functions of long noncoding RNAs (lncRNAs) in female reproductive and ovarian development. Studies in which there was characterization of lncRNAs in the ovaries of laying compared with nesting poultry, however, are limited. In this study, RNA libraries were constructed by obtaining sequencing data of ovarian tissues from laying and nesting Muscovy ducks. In the ovarian tissues of Muscovy ducks, a total of 334 differentially abundant mRNA transcripts (DEGs) and 36 differentially abundant lncRNA transcripts were identified in the nesting period, when compared with during the laying period. These results were subsequently validated by qRT-PCR using nine randomly-selected lncRNAs and six randomly-selected DAMTs. Furthermore, the cis- and trans-regulatory target genes of differentially abundant lncRNA transcripts were identified, and lncRNA-gene interaction networks of 34 differentially abundant lncRNAs and 263 DEGs were constructed. A total of 7601 lncRNAs neighboring 10,542 protein-coding genes were identified and found to be enriched in the Wnt signaling pathway and oocyte meiosis pathways associated with follicular development. Overall, only 11 cis-targets and 57 mRNA-mRNA except trans-targets were involved in the lncRNA-gene interaction networks. Based on the interaction networks, nine DEGs were trans-regulated by differentially abundant lncRNAs and 20 differentially abundant lncRNAs were hypothesized to have important functions in the regulation of broodiness in Muscovy ducks. In this study, a predicted interaction network of differentially abundant lncRNAs and DEGs in Muscovy ducks was constructed for the first time leading to an enhanced understanding of lncRNA and gene interactions regulating broodiness.
Collapse
|
6
|
Proteomic sift through serum and endometrium profiles unraveled signature proteins associated with subdued fertility and dampened endometrial receptivity in women with polycystic ovary syndrome. Cell Tissue Res 2020; 380:593-614. [PMID: 32052139 DOI: 10.1007/s00441-020-03171-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 01/10/2020] [Indexed: 01/20/2023]
Abstract
The objective of this study is to discern the proteomic differences responsible for hampering the receptivity of endometrium and subduing the fertility of females with polycystic ovary syndrome in analogy to healthy fertile females. This study was designed in collaboration with Hakeem Abdul Hameed Centenary Hospital affiliated to Jamia Hamdard, New Delhi, India. Serum samples were taken from infertile PCOS subjects (n = 6) and fertile control subjects (n = 6) whereas endometrial tissue samples were recruited from ovulatory PCOS (n = 4), anovulatory PCOS (n = 4) and normal healthy fertile control subjects (n = 4) for proteomic studies. Additionally, endometrial biopsies from healthy fertile control (n = 8), PCOS with infertility (n = 6), unexplained infertility (n = 3) and endometrial hyperplasia (n = 3) were taken for validation studies. Anthropometric, biochemical and hormonal evaluation was done for all the subjects enrolled in this study. Protein profiles were generated through 2D-PAGE and differential proteins analyzed with PD-QUEST software followed by identification with MALDI-TOF MS protein mass fingerprinting. Validation of identified proteins was done through RT-PCR relative expression analysis. Protein profiling of serum revealed differential expression of proteins involved in transcriptional regulation, embryogenesis, DNA repair, decidual cell ploidy, immunomodulation, intracellular trafficking and degradation processes. Proteins involved in cell cycle regulation, cellular transport and signaling, DNA repair, apoptotic processes and mitochondrial metabolism were found to be differentially expressed in endometrium. The findings of this study revealed proteins that hold strong candidature as potential drug targets to regulate the cellular processes implicating infertility and reduced receptivity of endometrium in women with polycystic ovary syndrome.
Collapse
|
7
|
Dynamic Changes of DNA Methylation and Transcriptome Expression in Porcine Ovaries during Aging. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8732023. [PMID: 31781648 PMCID: PMC6874880 DOI: 10.1155/2019/8732023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/19/2022]
Abstract
The biological function of human ovaries declines along with aging. To identify the underlying molecular changes during ovarian aging, pigs were used as model animals. Genome-wide DNA methylation and transcriptome-wide RNA expression analyses were performed via high-throughput sequencing of ovaries from young pigs (180 days, puberty stage of first ovulation) and old pigs (eight years, reproductive exhaustion stage). The results identified 422 different methylation regions between old and young pigs; furthermore, a total of 2,243 mRNAs, 95 microRNAs, 248 long noncoding RNAs (lncRNAs), and 116 circular RNAs (circRNAs) were differentially expressed during both developmental stages. Gene ontology analysis showed that these genes related to different methylation and expression are involved in the ovarian aging cycle. Specifically, these are involved in cell apoptosis, death effector domain binding, embryonic development, reproduction and fertilization process, ovarian cumulus expansion, and the ovulation cycle. Multigroup cooperative control relationships were also assessed, and competing endogenous RNA (ceRNA) networks were constructed in the ovarian aging cycle. These data will help to clarify ovary age-associated potential molecular changes in DNA methylation and transcriptional patterns over time.
Collapse
|
8
|
Genome-wide identification and characterization of long non-coding RNAs expressed during sheep fetal and postnatal hair follicle development. Sci Rep 2019; 9:8501. [PMID: 31186438 PMCID: PMC6559957 DOI: 10.1038/s41598-019-44600-w] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 05/03/2019] [Indexed: 01/09/2023] Open
Abstract
Long non-coding RNAs (lncRNAs), >200 nt in length, are transcribed from mammalian genomes. They play important regulatory roles in various biological processes; However, the function and expression profile of lncRNAs involved in the development of hair follicles in the fetus, have been relatively under-explored area. To investigate the specific role of lncRNAs and mRNAs that regulate hair follicle development, we herein performed a comprehensive study on the lncRNA and mRNA expression profiles of sheep at multiple embryonic days (E65, E85, E105, and E135) and six lambs aged one week (D7) and one month (D30) using RNA-seq technology. The number of genes (471 lncRNAs and 12,812 mRNAs) differentially expressed and potential targets of differentially expressed lncRNAs were predicted. Differentially expressed lncRNAs were grouped into 10 clusters based on their expression pattern by K-means clustering. Moreover, Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses showed that some differentially expressed mRNAs, such as DKK1, DSG4, FOXE1, Hoxc13, SFRP1, SFRP2, and Wnt10A overlapped with lncRNAs targets, and enriched in important hair follicle developmental pathways, including Wnt, TNF, and MAPK signaling pathways. In addition, 9 differentially expressed lncRNAs and 4 differentially expressed mRNAs were validated using quantitative real-time PCR (qRT-PCR). This study helps enrich the Ovis lncRNA databases and provides a comprehensive lncRNA transcriptome profile of fetal and postnatal skin of sheep. Additionally, it provides a foundation for further experiments on the role of lncRNAs in the regulation of hair growth in sheep.
Collapse
|
9
|
Hu K, He C, Ren H, Wang H, Liu K, Li L, Liao Y, Liang M. LncRNA Gm2044 promotes 17β-estradiol synthesis in mpGCs by acting as miR-138-5p sponge. Mol Reprod Dev 2019; 86:1023-1032. [PMID: 31179605 DOI: 10.1002/mrd.23179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 04/16/2019] [Accepted: 05/12/2019] [Indexed: 12/13/2022]
Abstract
Long noncoding RNAs (lncRNAs) have been demonstrated to play vital roles in mammalian reproduction. Our previous research revealed that lncRNA Gm2044 is highly expressed in mouse spermatocytes and regulates male germ cell function. The gene annotation database BioGPS shows that Gm2044 is not only highly expressed in testicular tissue but also in ovarian tissue, which suggests that Gm2044 may be involved in female reproductive development. In this study, we confirmed that lncRNA Gm2044 promotes 17β-estradiol synthesis in mouse pre-antral follicular granulosa cells (mpGCs). Furthermore, bioinformatics methods, western blot, and the luciferase assay proved that Gm2044 functions as a miR-138-5p sponge to inhibit the direct target of miR-138-5p, Nr5a1, which enhances 17β-estradiol synthesis through cyp19a1 activation. Taken together, our results provide an insight into the mechanistic roles of lncRNA Gm2044 for 17β-estradiol synthesis by acting as competing-endogenous RNAs to modulate the function of mpGCs. Studying the potential lncRNAs, which regulate estradiol release, will be beneficial for the diagnosis and treatment of steroid hormone-related disease.
Collapse
Affiliation(s)
- Ke Hu
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Chaofan He
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Huanhuan Ren
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Haiyan Wang
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Kuan Liu
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Leina Li
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Yaping Liao
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| | - Meng Liang
- Division of Biotechnology, School of Life Sciences, Bengbu Medical College, Bengbu, Anhui, People's Republic of China
| |
Collapse
|
10
|
Long noncoding RNA and mRNA expression profiles following igf3 knockdown in common carp, Cyprinus carpio. Sci Data 2019; 6:190024. [PMID: 30778253 PMCID: PMC6380219 DOI: 10.1038/sdata.2019.24] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/11/2019] [Indexed: 12/20/2022] Open
Abstract
As a novel IGF system member, igf3 plays an important role in gonadal development of teleost fish. Although studies have reported the unusual expression of igf3 in fish gonad, whether the igf3 affects the expression of long noncoding RNAs (lncRNAs) in gonad remains unknown. In this study, an igf3 knockdown common carp (Cyprinus carpio) model was established by RNA interference. Then RNA sequencing of C. carpio gonad after igf3 knockdown was performed. A total of 327,169,410 and 306,305,018 clean reads were identified from control and igf3-dsRNA interference group, respectively. After a stringent filtering, RNA-seq yielded 14199 lncRNA and 106932 mRNA transcripts with 124 and 353 differentially expressed lncRNAs and mRNAs. Our dataset provides an extensive resource for understanding the potential regulatory molecular mechanism of igf3 in early stage of gonadal development in C. carpio.
Collapse
|
11
|
Zheng L, Luo R, Su T, Hu L, Gao F, Zhang X. Differentially Expressed lncRNAs After the Activation of Primordial Follicles in Mouse. Reprod Sci 2018; 26:1094-1104. [PMID: 30376771 DOI: 10.1177/1933719118805869] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The activation of primordial follicles is critical to ovarian follicle development, which directly influences female fertility and reproductive life span. Several studies have suggested a role for long noncoding RNAs (lncRNAs) in ovarian function. However, the precise involvement of lncRNAs in the initiation of primordial follicles is still unknown. Here, an in vitro culture model was used to investigate the roles of lncRNAs in primordial follicle activation. We found that primordial follicles in day 3 mouse ovaries were activated after culturing for 8 days in vitro, as indicated by ovarian morphology changes, increases in primary follicle number, and downregulation of mammalian Sterile 20-like kinase messenger RNA (mRNA) and upregulation of growth differentiation factor 9 mRNA. We next examined lncRNA expression profiles by RNA sequencing at the transcriptome level and found that among 60 078 lncRNAs, 6541 lncRNA were upregulated and 2135 lncRNA were downregulated in 3-day ovaries cultured for 8 days in vitro compared with ovaries from day 3 mice. We also found that 4171 mRNAs were upregulated and 1795 were downregulated in the cultured ovaries. Gene ontology and pathway analyses showed that the functions of differentially expressed lncRNA targets and mRNAs were closely linked with many processes and pathways related to ovary development, including cell proliferation and differentiation, developmental processes, and other signaling transduction pathways. Additionally, many novel identified lncRNAs showed inducible expression, suggesting that these lncRNAs may be good candidates for investigating mouse primordial follicle activation. This study provides a foundation for further exploring lncRNA-related mechanisms in the initiation of mouse primordial follicles.
Collapse
Affiliation(s)
- Liping Zheng
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Ruichen Luo
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Tie Su
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Liaoliao Hu
- 1 Jiangxi Medical College, Nanchang University, Nanchang, China.,2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China
| | - Fengxin Gao
- 3 Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| | - Xiaoning Zhang
- 2 Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, Nanchang University, Nanchang, China.,3 Institute of Life Science and School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Genome-wide differential expression profiling of mRNAs and lncRNAs associated with prolificacy in Hu sheep. Biosci Rep 2018; 38:BSR20171350. [PMID: 29439142 PMCID: PMC5920141 DOI: 10.1042/bsr20171350] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 01/30/2018] [Accepted: 01/31/2018] [Indexed: 12/13/2022] Open
Abstract
Reproductive ability, especially prolificacy, impacts sheep profitability. Hu sheep, a unique Chinese breed, is recognized for its high prolificacy (HP), early sexual maturity, and year-round estrus. However, little is known about the molecular mechanisms underlying HP in Hu sheep. To explore the potential mRNAs and long non-coding RNAs (lncRNAs) involved in Hu sheep prolificacy, we performed an ovarian genome-wide analysis of mRNAs and lncRNAs during the follicular stage using Hu sheep of HP (litter size = 3; three consecutive lambings) and low prolificacy (LP, litter size = 1; three consecutive lambings). Plasma luteinizing hormone (LH) concentration was higher in the HP group than in the LP group (P<0.05) during the follicular stage. Subsequently, 76 differentially expressed mRNAs (DE-mRNAs) and five differentially expressed lncRNAs (DE-lncRNAs) were identified by pairwise comparison; quantitative real-time PCR (qRT-PCR) analysis of ten randomly selected DE genes (mRNA and lncRNA) were consistent with the sequencing results. Gene Ontology (GO) analysis of DE-mRNAs revealed significant enrichment in immune response components, actin filament severing and phagocytosis. Pathway enrichment analysis of DE-mRNAs indicated a predominance of immune function pathways, including phagosomes, lysosomes, and antigen processing. We constructed a co-expression network of DE-mRNAs and mRNA-lncRNAs, with C1qA, CD53, cathepsin B (CTSB), CTSS, TYROBP, and AIF1 as the hub genes. Finally, the expression of lysosomal protease cathepsin genes, CTSB and cathepsin D (CTSD), were significantly up-regulated in sheep ovaries in the HP group compared with the LP group (P<0.05). These differential mRNAs and lncRNAs may provide information on the molecular mechanisms underlying sheep prolificacy.
Collapse
|
13
|
Cai B, Zheng Y, Ma S, Xing Q, Wang X, Yang B, Yin G, Guan F. Long non‑coding RNA regulates hair follicle stem cell proliferation and differentiation through PI3K/AKT signal pathway. Mol Med Rep 2018; 17:5477-5483. [PMID: 29393477 DOI: 10.3892/mmr.2018.8546] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/15/2017] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are defined as non-coding transcripts (>200 nucleotides) that serve important roles in the proliferation and differentiation of stem cells. Hair follicle stem cells (HFTs) have multidirectional differentiation potential and are able to differentiate into skin, hair follicles and sebaceous glands, serving a role in skin wound healing. The aim of the present study was to analyze the regulatory role of lncRNA AK015322 (IncRNA5322) in HFTs and the potential mechanism of IncRNA5322‑mediated differentiation of HFTs. The results demonstrated that lncRNA5322 transfection promoted proliferation and differentiation in HFTs. It was identified that lncRNA5322 transfection upregulated the expression and phosphorylation of phosphoinositide 3‑kinase (PI3K) and protein kinase B (AKT) in HFTs. It was also observed that lncRNA5322 transfection upregulated microRNA (miR)‑21 and miR‑21 agonist (agomir‑21) eliminated lncRNA5322‑induced expression and phosphorylation of PI3K and AKT. The present study also demonstrated that agomir‑21 blocked IncRNA5322‑induced expression and phosphorylation of PI3K and AKT in HFTs. The results indicated that agomir‑21 transfection also suppressed the IncRNA5322‑induced proliferation and differentiation of HFTs. In conclusion, the results of the present study suggest that lncRNA5322 is able to promote the proliferation and differentiation of HFTs by targeting the miR‑21‑mediated PI3K‑AKT signaling pathway in HFTs.
Collapse
Affiliation(s)
- Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yunpeng Zheng
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Shanshan Ma
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Qu Xing
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xinxin Wang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Bo Yang
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Guangwen Yin
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Fangxia Guan
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
14
|
Salviano-Silva A, Lobo-Alves SC, Almeida RCD, Malheiros D, Petzl-Erler ML. Besides Pathology: Long Non-Coding RNA in Cell and Tissue Homeostasis. Noncoding RNA 2018; 4:ncrna4010003. [PMID: 29657300 PMCID: PMC5890390 DOI: 10.3390/ncrna4010003] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 01/24/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022] Open
Abstract
A significant proportion of mammalian genomes corresponds to genes that transcribe long non-coding RNAs (lncRNAs). Throughout the last decade, the number of studies concerning the roles played by lncRNAs in different biological processes has increased considerably. This intense interest in lncRNAs has produced a major shift in our understanding of gene and genome regulation and structure. It became apparent that lncRNAs regulate gene expression through several mechanisms. These RNAs function as transcriptional or post-transcriptional regulators through binding to histone-modifying complexes, to DNA, to transcription factors and other DNA binding proteins, to RNA polymerase II, to mRNA, or through the modulation of microRNA or enzyme function. Often, the lncRNA transcription itself rather than the lncRNA product appears to be regulatory. In this review, we highlight studies identifying lncRNAs in the homeostasis of various cell and tissue types or demonstrating their effects in the expression of protein-coding or other non-coding RNA genes.
Collapse
Affiliation(s)
- Amanda Salviano-Silva
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Sara Cristina Lobo-Alves
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Rodrigo Coutinho de Almeida
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Danielle Malheiros
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| | - Maria Luiza Petzl-Erler
- Laboratory of Human Molecular Genetics, Department of Genetics, Universidade Federal do Paraná, Curitiba 81531-980, Caixa Postal 19071, Brazil.
| |
Collapse
|