1
|
Jia Z, Wang F, Li G, Jiang P, Leng Y, Ke L, Luo L, Gao W. Zinc finger protein 468 up-regulation of TFAM contributes to the malignant growth and cisplatin resistance of breast cancer cells. Cell Div 2024; 19:8. [PMID: 38429817 PMCID: PMC10908137 DOI: 10.1186/s13008-024-00113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Because of the progress on the diagnosis and treatment for patients with breast cancer (BC), the overall survival of the patients has been improved. However, a number of BC patients cannot benefit from the existing therapeutic strategies as the essential molecular events triggering the development of BC are not well understood. Previous studies have shown that abnormal expression of zinc finger proteins is involved in the development of various malignancies, whereas it remains largely unclear on their significance during the progression of BC. In this study, we aimed to explore the clinical relevance, cellular function and underlying mechanisms of zinc finger protein 468 (ZNF468) in BC. METHODS The clinical relevance of ZNF468 and TFAM was analyzed based on TCGA database. Overexpression or knockdown of ZNF468 and TFAM were performed by transfecting the cells with overexpression plasmids and siRNAs, respectively. Overexpression and knockdown efficacy was checked by immunoblotting. CCK-8, colony formation, transwell and apoptosis experiments were conducted to check the cellular function of ZNF468 and TFAM. The content of mtDNA was measured by the indicated assay kit. The effects of cisplatin on BC cells were detected by CCK-8 and colony formation assays. The regulation of ZNF468 on TFAM was analyzed by RT-qPCR, immunoblotting, dual luciferase activity and ChIP-qPCR assays. RESULTS ZNF468 was overexpressed in BC patients and inversely correlated with their prognosis. Based on overexpression and knockdown assays, we found that ectopic expression of ZNF468 was essential for the proliferation, growth and migration of BC cells. The expression of ZNF468 also negatively regulated the sensitivity of BC cells to the treatment of cisplatin. Mechanistically, ZNF468 potentiated the transcription activity of TFAM gene via direct binding on its promoter. Lastly, we demonstrated that ZNF468 up-regulation of TFAM was important for the growth, migration and cisplatin resistance in BC cells. CONCLUSION Our study indicates that ZNF468 promotes BC cell growth and migration via transcriptional activation of TFAM. ZNF468/TFAM axis can serve as the diagnostic and therapeutic target, as well as the predictor of cisplatin effectiveness in BC patients.
Collapse
Affiliation(s)
- Zhaoyang Jia
- Department of Radiation Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Wang
- Department of Radiation Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Gongzhuo Li
- Department of Oncology, GuiHang Guiyang Hospital, Guiyang, China
| | - Ping Jiang
- Department of Oncology, GuiHang Guiyang Hospital, Guiyang, China
| | - Yuanxiu Leng
- Department of Oncology, GuiHang Guiyang Hospital, Guiyang, China
| | - Longzhu Ke
- Hubei University of Chinese Medicine, Wuhan, China
| | - Li Luo
- Department of Oncology, GuiHang Guiyang Hospital, Guiyang, China.
| | - Wei Gao
- Department of Radiation Oncology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
2
|
Zhang W, Lin S, Zeng B, Chen X, Chen L, Chen M, Guo W, Lin Y, Yu L, Hou J, Li Y, Li S, Jin X, Cai W, Zhang K, Nie Q, Chen H, Li J, He P, Cai Q, Qiu Y, Wang C, Fu F. High leukocyte mitochondrial DNA copy number contributes to poor prognosis in breast cancer patients. BMC Cancer 2023; 23:377. [PMID: 37098487 PMCID: PMC10131463 DOI: 10.1186/s12885-023-10838-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 04/12/2023] [Indexed: 04/27/2023] Open
Abstract
BACKGROUND Compelling evidence has indicated a significant association between leukocyte mitochondrial DNA copy number (mtDNAcn) and prognosis of several malignancies in a cancer-specific manner. However, whether leukocyte mtDNAcn can predict the clinical outcome of breast cancer (BC) patients has not been well investigated. METHODS The mtDNA copy number of peripheral blood leukocytes from 661 BC patients was measured using a Multiplex AccuCopy™Kit based on a multiplex fluorescence competitive PCR principle. Kaplan-Meier curves and Cox proportional hazards regression model were applied to investigate the association of mtDNAcn with invasive disease-free survival (iDFS), distant disease-free survival (DDFS), breast cancer special survival (BCSS), and overall survival (OS) of patients. The possible mtDNAcn-environment interactions were also evaluated by the Cox proportional hazard regression models. RESULTS BC patients with higher leukocyte mtDNA-CN exhibited a significantly worse iDFS than those with lower leukocyte mtDNAcn (5-year iDFS: fully-adjusted model: HR = 1.433[95%CI 1.038-1.978], P = 0.028). Interaction analyses showed that mtDNAcn was significantly associated with hormone receptor status (adjusted p for interaction: 5-year BCSS: 0.028, 5-year OS: 0.022), so further analysis was mainly in the HR subgroup. Multivariate Cox regression analysis demonstrated that mtDNAcn was an independent prognostic factor for both BCSS and OS in HR-positive patients (HR+: 5-year BCSS: adjusted HR (aHR) = 2.340[95% CI 1.163-4.708], P = 0.017 and 5-year OS: aHR = 2.446 [95% CI 1.218-4.913], P = 0.011). CONCLUSIONS For the first time, our study demonstrated that leukocyte mtDNA copy number might influence the outcome of early-stage breast cancer patients depending on intrinsic tumor subtypes in Chinese women.
Collapse
Grants
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2018Y9055 Joint Funds for the Innovation of Science and Technology, Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2019-WJ-23 Joint Key Funds for the Health and Education of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
- 2021J01737 Joint Key Funds for the Natural Science Foundation of Fujian Province
Collapse
Affiliation(s)
- Wenzhe Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Songping Lin
- Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian Province, China
| | - Bangwei Zeng
- Nosocomial Infection Control Branch, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xiaobin Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Lili Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Minyan Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Wenhui Guo
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yuxiang Lin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Liuwen Yu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jialin Hou
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yan Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Shengmei Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Xuan Jin
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Weifeng Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Kun Zhang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qian Nie
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Hanxi Chen
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Jing Li
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Peng He
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Qindong Cai
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Yibin Qiu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China
| | - Chuan Wang
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| | - Fangmeng Fu
- Department of Breast Surgery, Fujian Medical University Union Hospital, No.29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
- Department of General Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian Province, China.
- Breast Cancer Institute, Fujian Medical University, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
3
|
Golubickaite I, Ugenskiene R, Bartnykaite A, Poskiene L, Vegiene A, Padervinskis E, Rudzianskas V, Juozaityte E. Mitochondria-Related TFAM and POLG Gene Variants and Associations with Tumor Characteristics and Patient Survival in Head and Neck Cancer. Genes (Basel) 2023; 14:434. [PMID: 36833361 PMCID: PMC9956916 DOI: 10.3390/genes14020434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
In 2020, 878,348 newly reported cases and 444,347 deaths related to head and neck cancer were reported. These numbers suggest that there is still a need for molecular biomarkers for the diagnosis and prognosis of the disease. In this study, we aimed to analyze mitochondria-related mitochondrial transcription factor A (TFAM) and DNA polymerase γ (POLG) single-nucleotide polymorphisms (SNPs) in the head and neck cancer patient group and evaluate associations between SNPs, disease characteristics, and patient outcomes. Genotyping was performed using TaqMan probes with Real-Time polymerase chain reaction. We found associations between TFAM gene SNPs rs11006129 and rs3900887 and patient survival status. We found that patients with the TFAM rs11006129 CC genotype and non-carriers of the T allele had longer survival times than those with the CT genotype or T-allele carriers. Additionally, patients with the TFAM rs3900887 A allele tended to have shorter survival times than non-carriers of the A allele. Our findings suggest that variants in the TFAM gene may play an important role in head and neck cancer patient survival and could be considered and further evaluated as prognostic biomarkers. However, due to the limited sample size (n = 115), further studies in larger and more diverse cohorts are needed to confirm these findings.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Agne Bartnykaite
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Aurelija Vegiene
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Evaldas Padervinskis
- Department of Otorhinolaryngology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Viktoras Rudzianskas
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
4
|
Effects of the anti-inflammatory drug celecoxib on cell death signaling in human colon cancer. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:1171-1185. [PMID: 36692829 DOI: 10.1007/s00210-023-02399-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/16/2023] [Indexed: 01/25/2023]
Abstract
The anti-inflammatory drug celecoxib, the only inhibitor of cyclooxygenase-2 (COX-2) with anticancer activity, is used to treat rheumatoid arthritis and can cause endoplasmic reticulum (ER) stress by inhibiting sarco/ER Ca2 +-ATPase activity in cancer cells. This study aimed to investigate the correlation between celecoxib-induced ER stress and the effects of celecoxib against cell death signaling. Treatment of human colon cancer HCT116 cells with celecoxib reduced their viability and resulted in a loss of mitochondrial membrane potential ([Formula: see text]). Additionally, celecoxib treatment reduced the expression of genes involved in mitochondrial biogenesis and metabolism such as mitochondrial transcription factor A (TFAM) and uncoupling protein 2 (UCP2). Furthermore, celecoxib reduced transmembrane protein 117 (TMEM117), and RNAi-mediated knockdown of TMEM117 reduced TFAM and UCP2 expressions. These results suggest that celecoxib treatment results in the loss of [Formula: see text] by reducing TMEM117 expression and provide insights for the development of novel drugs through TMEM117 expression.
Collapse
|
5
|
Expression Profile of mRNAs and miRNAs Related to the Oxidative-Stress Phenomenon in the Ishikawa Cell Line Treated Either Cisplatin or Salinomycin. Biomedicines 2022; 10:biomedicines10051190. [PMID: 35625926 PMCID: PMC9138494 DOI: 10.3390/biomedicines10051190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/14/2022] [Accepted: 05/18/2022] [Indexed: 12/10/2022] Open
Abstract
The oxidative stress phenomenon is a result of anticancer therapy. The aim of this study was the assessment of gene expression profile changes, and to determine the miRNAs regulating genes’ transcriptional activity in an Ishikawa endometrial cancer culture exposed to cisplatin or salinomycin, compared to a control culture. The molecular analysis comprised the microarray technique (mRNAs and micro RNA (miRNA), the real-time quantitative reverse transcription reaction (RTqPCR), enzyme-linked immunosorbent assay (ELISA) reactions, and Western blot. NR4A2, MAP3K8, ICAM1, IL21, CXCL8, CCL7, and SLC7A11 were statistically significantly differentiated depending not only on time, but also on the drug used in the experiment. The conducted assessment indicated that the strongest links were between NR4A2 and hsa-miR-30a-5p and has-miR-302e, MAP3K8 and hsa-miR-144-3p, CXCL8 and hsa-miR-140-3p, and SLC7A11 and hsa-miR-144-3p. The obtained results suggest that four mRNAs—NR4A2, MAP3K8, CXCL8 and SLC7A11—and four miRNAs—hsa-miR-30a-5p, hsa-miR-302e, hsa-miR-144-3p and hsa-miR-140-3—changed their expressions regardless of the chemotherapeutic agent used, which suggests the possibility of their use in monitoring the severity of oxidative stress in endometrial cancer. However, considering the results at both the mRNA and the protein level, it is most likely that the expressions of NR4A2, MAP3K8, CXCL8 and SLC7A11 are regulated by miRNA molecules as well as other epigenetic mechanisms.
Collapse
|
6
|
Berkel C, Cacan E. Estrogen- and estrogen receptor (ER)-mediated cisplatin chemoresistance in cancer. Life Sci 2021; 286:120029. [PMID: 34634322 DOI: 10.1016/j.lfs.2021.120029] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/28/2021] [Accepted: 10/02/2021] [Indexed: 12/21/2022]
Abstract
Cisplatin is a platinum-based chemotherapeutic drug used in the standard treatment of various solid cancers including testicular, bladder, head and neck, cervical and ovarian cancer. Although successful clinical responses are observed in patients following initial cisplatin treatment, resistance to cisplatin ultimately develops in most patients, leading to therapeutic failure. Multiple molecular mechanisms contributing to cisplatin resistance in cancer cells have been identified to date. In this review, we discuss the effect of estrogen, estrogen receptors (ERs) and estrogen-related receptors (ERRs) on cisplatin resistance in various cancer types. We highlight that estrogen treatment or increased expression of ERs or ERRs are generally associated with higher cisplatin resistance in cancer in vitro, mostly due to decreased caspase activity, increased anti-apoptotic protein levels such as BCL-2, higher drug efflux and higher levels of antioxidant enzymes. Targeted inhibition of ERs or estrogen production in combination with cisplatin treatment thus can be a useful strategy to overcome chemoresistance in certain cancer types. Estrogen levels and ER status can also be considered to identify cancer patients with a high potential of therapy response against cisplatin. A better mechanistic understanding of the involvement of estrogen, ERs and ERRs in the development of cisplatin resistance is needed to improve the management of cancer treatment.
Collapse
Affiliation(s)
- Caglar Berkel
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.
| | - Ercan Cacan
- Department of Molecular Biology and Genetics, Tokat Gaziosmanpasa University, Tokat 60250, Turkey.
| |
Collapse
|
7
|
Golubickaite I, Ugenskiene R, Cepaite J, Ziliene E, Inciura A, Poskiene L, Juozaityte E. Mitochondria-related TFAM gene variants and their effects on patients with cervical cancer. Biomed Rep 2021; 15:106. [PMID: 34765190 PMCID: PMC8576402 DOI: 10.3892/br.2021.1482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/13/2021] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer is the fourth most common type of cancer in women worldwide, with high incidence and mortality rates, particularly in developing countries. There are human papillomavirus vaccines and cytological screening programs available; however, there are no molecular markers that would aid the prognosis of the course of the disease or prediction of the outcomes of the patients. The aim of the present study was to investigate the associations between single nucleotide polymorphisms (SNPs) of the mitochondrial transcription factor A (TFAM) gene (rs11006132, rs11006129, rs1937, rs16912174, rs16912202 and rs3900887), and the clinical parameters and tumor phenotype of patients with cervical cancer. DNA isolated from patients with cervical cancer (n=172) was used for genotyping using Real-Time PCR using TaqMan probes. It was revealed that the TFAM rs3900887 TT and AT genotypes were associated with a lower risk of developing larger tumors. The results showed an association between the rs3900887 SNP and tumor phenotype, indicating TFAM rs3900887 as a potential biomarker for tumor size in cervical cancer.
Collapse
Affiliation(s)
- Ieva Golubickaite
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Rasa Ugenskiene
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania.,Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Juste Cepaite
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Egle Ziliene
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Arturas Inciura
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Lina Poskiene
- Department of Pathological Anatomy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Elona Juozaityte
- Institute of Oncology, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| |
Collapse
|
8
|
Vozáriková V, Kunová N, Bauer JA, Frankovský J, Kotrasová V, Procházková K, Džugasová V, Kutejová E, Pevala V, Nosek J, Tomáška Ľ. Mitochondrial HMG-Box Containing Proteins: From Biochemical Properties to the Roles in Human Diseases. Biomolecules 2020; 10:biom10081193. [PMID: 32824374 PMCID: PMC7463775 DOI: 10.3390/biom10081193] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022] Open
Abstract
Mitochondrial DNA (mtDNA) molecules are packaged into compact nucleo-protein structures called mitochondrial nucleoids (mt-nucleoids). Their compaction is mediated in part by high-mobility group (HMG)-box containing proteins (mtHMG proteins), whose additional roles include the protection of mtDNA against damage, the regulation of gene expression and the segregation of mtDNA into daughter organelles. The molecular mechanisms underlying these functions have been identified through extensive biochemical, genetic, and structural studies, particularly on yeast (Abf2) and mammalian mitochondrial transcription factor A (TFAM) mtHMG proteins. The aim of this paper is to provide a comprehensive overview of the biochemical properties of mtHMG proteins, the structural basis of their interaction with DNA, their roles in various mtDNA transactions, and the evolutionary trajectories leading to their rapid diversification. We also describe how defects in the maintenance of mtDNA in cells with dysfunctional mtHMG proteins lead to different pathologies at the cellular and organismal level.
Collapse
Affiliation(s)
- Veronika Vozáriková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Nina Kunová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jacob A. Bauer
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Ján Frankovský
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Veronika Kotrasová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Katarína Procházková
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
| | - Eva Kutejová
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Vladimír Pevala
- Institute of Molecular Biology, Slovak Academy of Sciences, Dúbravská cesta 21, 845 51 Bratislava, Slovakia; (N.K.); (J.A.B.); (V.K.); (E.K.); (V.P.)
| | - Jozef Nosek
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina CH-1, 842 15 Bratislava, Slovakia;
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina B-1, 842 15 Bratislava, Slovakia; (V.V.); (J.F.); (K.P.); (V.D.)
- Correspondence: ; Tel.: +421-2-90149-433
| |
Collapse
|
9
|
Franco DG, Moretti IF, Marie SKN. Mitochondria Transcription Factor A: A Putative Target for the Effect of Melatonin on U87MG Malignant Glioma Cell Line. Molecules 2018; 23:molecules23051129. [PMID: 29747444 PMCID: PMC6099566 DOI: 10.3390/molecules23051129] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/30/2022] Open
Abstract
The disruption of mitochondrial activity has been associated with cancer development because it contributes to regulating apoptosis and is the main source of reactive oxygen species (ROS) production. Mitochondrial transcription factor A (TFAM) is a protein that maintains mitochondrial DNA (mtDNA) integrity, and alterations in its expression are associated with mitochondrial damage and cancer development. In addition, studies have shown that mitochondria are a known target of melatonin, the pineal gland hormone that plays an important anti-tumorigenic role. Thus, we hypothesized that melatonin decreases the expression of TFAM (RNA and protein) in the human glioblastoma cell line U87MG, which disrupts mtDNA expression and results in cell death due to increased ROS production and mitochondrial damage. Our results confirm the hypothesis, and also show that melatonin reduced the expression of other mitochondrial transcription factors mRNA (TFB1M and TFB2M) and interfered with mtDNA transcription. Moreover, melatonin delayed cell cycle progression and potentiated the reduction of cell survival due to treatment with the chemotherapeutic agent temozolomide. In conclusion, elucidating the effect of melatonin on TFAM expression should help to understand the signaling pathways involved in glioblastoma progression, and melatonin could be potentially applied in the treatment of this type of brain tumor.
Collapse
Affiliation(s)
- Daiane G Franco
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| | - Isabele F Moretti
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| | - Suely K N Marie
- Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP 01246903, Brazil.
| |
Collapse
|
10
|
Shen L, Sun B, Sheng J, Yu S, Li Y, Xu H, Su J, Sun L. PGC1α promotes cisplatin resistance in human ovarian carcinoma cells through upregulation of mitochondrial biogenesis. Int J Oncol 2018; 53:404-416. [PMID: 29749474 DOI: 10.3892/ijo.2018.4401] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/23/2018] [Indexed: 11/06/2022] Open
Abstract
The induction of lesions in nuclear and mitochondrial DNA by cisplatin is only a small component of its cytostatic/cytotoxic activity. The signaling pathway network in the nucleus and cytoplasm may contribute to chemotherapeutic resistance. Peroxisome proliferator-activated receptor-coactivator 1α (PGC1α)-mediated mitochondrial biogenesis regulates mitochondrial structural and the functional adaptive response against chemotherapeutic stress, and may be a therapeutic target. However, this regulatory network is complex and depends upon tumor types and environments, which require further investigation. Our previous study found that cisplatin-resistant ovarian epithelial carcinoma was more dependent on mitochondrial aerobic oxidation to support their growth, suggesting the association between mitochondrial function and chemotherapeutic resistance. In the present study, it was demonstrated that the expression of PGC1α and level of mitochondrial biogenesis were higher in cisplatin-resistant SKOV3/DDP cells compared with cisplatin-sensitive SKOV3 cells. Furthermore, SKOV3/DDP cells upregulated the expression of PGC1α and maintained mitochondrial structural and functional integrity through mitochondrial biogenesis under cisplatin stress. Inhibiting the expression of PGC1α using short hairpin RNA led to the downregulation of mitochondrial biogenesis and high levels of apoptosis in the SKOV3/DDP cells, and cisplatin resistance was reversed in the PGC1α-deficient SKOV3/DDP cells. Collectively, the present study provided evidence that cisplatin stimulated the expression of PGC1α and the upregulation of mitochondrial biogenesis through PGC1α, promoting cell viability and inhibiting apoptosis in response to cisplatin treatment, thus triggering cisplatin resistance in ovarian cancer cells.
Collapse
Affiliation(s)
- Luyan Shen
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Boyang Sun
- Department of Biochemistry and Molecular Biology, Basic College of Medicine, Yanbian University, Yanbian Korean Autonomous Prefecture, Jilin 133002, P.R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreas Surgery, Second Hospital, Jilin University, Changchun, Jilin 130041, P.R. China
| | - Sihang Yu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yanqing Li
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Huadan Xu
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Jing Su
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| | - Liankun Sun
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
11
|
MiR-199a-3p enhances breast cancer cell sensitivity to cisplatin by downregulating TFAM (TFAM). Biomed Pharmacother 2017; 88:507-514. [PMID: 28126676 DOI: 10.1016/j.biopha.2017.01.058] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 12/28/2016] [Accepted: 01/09/2017] [Indexed: 01/02/2023] Open
Abstract
Chemotherapy resistance is the major obstacle to the effective therapy of cancer. While the mechanism of chemotherapy resistance is still not fully understood. Increasing evidences demonstrated that microRNAs (miRNAs) may have a crucial function in chemotherapy resistance through modulating intracellular pathways. MiR-199a has been shown to be involved in multiple malignancy-related processes, although the precise mechanism is unclear at present. In this study, we found that the expression level of miR-199a-3p was lower in cisplatin (DDP) resistant breast cancer MDA-MB-231/DDP cells compared with parental DDP-sensitive cells. Inhibition of miR-199a-3p in MDA-MB-231 cells significantly attenuated DDP-induced apoptosis and anti-proliferative effects, while overexpression of miR-199a-3p in MDA-MB-231/DDP cells increased the sensitivity to DDP. Moreover, expression levels of mitochondrial transcription factor A (TFAM) were modulated by miR-199a-3p. The luciferase reporter assay indicated that TFAM may be the target gene of miR-199a. Knocking down of TFAM could partially reverse DDP resistance in MDA-MB-231 cells induced by miR-199a-3p inhibition, while TFAM overexpression could partially restore miR-199a-3p-induced chemo-sensitivity of MDA-MB-231/DDP cells to DDP. These results show that miR-199a-3p is able to attenuate cisplatin resistance in breast cancer cells through inhibiting TFAM expression.
Collapse
|