1
|
Smith J, Rai V. Novel Factors Regulating Proliferation, Migration, and Differentiation of Fibroblasts, Keratinocytes, and Vascular Smooth Muscle Cells during Wound Healing. Biomedicines 2024; 12:1939. [PMID: 39335453 PMCID: PMC11429312 DOI: 10.3390/biomedicines12091939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic diabetic foot ulcers (DFUs) are a significant complication of diabetes mellitus, often leading to amputation, increased morbidity, and a substantial financial burden. Even with the advancements in the treatment of DFU, the risk of amputation still exists, and this occurs due to the presence of gangrene and osteomyelitis. Nonhealing in a chronic DFU is due to decreased angiogenesis, granulation tissue formation, and extracellular matrix remodeling in the presence of persistent inflammation. During wound healing, the proliferation and migration of fibroblasts, smooth muscle cells, and keratinocytes play a critical role in extracellular matrix (ECM) remodeling, angiogenesis, and epithelialization. The molecular factors regulating the migration, proliferation, and differentiation of these cells are scarcely discussed in the literature. The literature review identifies the key factors influencing the proliferation, migration, and differentiation of fibroblasts, keratinocytes, and vascular smooth muscle cells (VSMCs), which are critical in wound healing. This is followed by a discussion on the various novel factors regulating the migration, proliferation, and differentiation of these cells but not in the context of wound healing; however, they may play a role. Using a network analysis, we examined the interactions between various factors, and the findings suggest that the novel factors identified may play a significant role in promoting angiogenesis, granulation tissue formation, and extracellular matrix remodeling during wound healing or DFU healing. However, these interactions warrant further investigation to establish their role alone or synergistically.
Collapse
Affiliation(s)
- Jacob Smith
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vikrant Rai
- Department of Translational Research, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
2
|
Ganeshalingam S, Nadarajapillai K, Sellaththurai S, Kim G, Kim J, Lee JH, Jeong T, Wan Q, Lee J. Molecular characterization, immune expression, and functional delineation of peroxiredoxin 1 in Epinephelus akaara. FISH & SHELLFISH IMMUNOLOGY 2023; 133:108552. [PMID: 36669605 DOI: 10.1016/j.fsi.2023.108552] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/20/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Peroxiredoxin 1 is a member of the typical 2-Cys peroxiredoxin family, which serves diverse functions in gene expression, immune and inflammatory responses, and tumor progression. In this study, we aimed to analyze the structural, functional, and immunomodulatory properties of peroxiredoxin 1 from Epinephelus akaara (EaPrx1). The open reading frame of EaPrx1 is 597 base pairs in length, encoding 198 amino acids, with a molecular weight of approximately 22 kDa. The in silico analysis revealed that EaPrx1 shares a conserved thioredoxin fold and signature motifs that are critical for its catalytic activity and oligomerization. Further, EaPrx1 is closely related to Epinephelus lanceolatus Prx1 and clustered in the Fishes group of the vertebrate clade, revealing that EaPrx1 was conserved throughout evolution. In terms of tissue distribution, a high level of EaPrx1 expression was observed in the spleen, brain, and blood tissues. Likewise, in immune challenge experiments, significant transcriptional modulations of EaPrx1 upon lipopolysaccharide, polyinosinic:polycytidylic acid, and nervous necrosis virus injections were noted at different time points, indicating the immunological role of EaPrx1 against pathogenic infections. In the functional analysis, rEaPrx1 exhibited substantial DNA protection, insulin disulfide reduction, and tissue repair activities, which were concentration-dependent. EaPrx1/pcDNA™ 3.1 (+)-transfected fathead minnow cells revealed high cell viability upon arsenic toxicity, indicating the heavy metal detoxification activity of EaPrx1. Taken together, the transcriptional and functional studies imply critical roles of EaPrx1 in innate immunity, redox regulation, apoptosis, and tissue-repair processes in E. akaara.
Collapse
Affiliation(s)
- Subothini Ganeshalingam
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Kishanthini Nadarajapillai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Sarithaa Sellaththurai
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Ji Hun Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea
| | - Taehyug Jeong
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Self-Governing Province, 63333, Republic of Korea.
| |
Collapse
|
3
|
Soto C, Rojas V, Yáñez L, Hidalgo A, Olivera M, Pacheco M, Venegas D, Salinas D, Bravo D, Quest AF. Porphyromonas gingivalis-Helicobacter pylori co-incubation enhances Porphyromonas gingivalis virulence and increases migration of infected human oral keratinocytes. J Oral Microbiol 2022; 14:2107691. [PMID: 35978839 PMCID: PMC9377229 DOI: 10.1080/20002297.2022.2107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background Porphyromonas gingivalis is part of the subgingival biofilm and a keystone species in the development of periodontitis. Interactions between P.gingivalis and other bacteria in biofilms have been shown to affect bacterial virulence. Helicobacter pylori also inhabits the subgingival biofilm, but the consequences of interactions there with P.gingivalis remain unknown. Here, we investigated how the pre-incubation of P.gingivalis with H.pylori affects P.gingivalis virulence. Methods We assayed P.gingivalis internalization by oral keratinocytes (OKs), hemagglutination and biofilm formation to identify alterations in virulence after pre-incubation with H. pylori. Also, we evaluated viability and migration of OKs infected with P. gingivalis, as well as the role of toll-like receptor 4 (TLR4). In addition, we quantified the mRNA of genes associated with P.gingivalis virulence. Results Pre-incubation of P.gingivalis with H.pylori enhanced P.gingivalis biofilm formation, bacterial internalization into OKs and hemagglutination. Infection with pre-incubated P.gingivalis increased OK migration in a manner dependent on the O-antigen and linked to increased expression of the gingipain RgpB. Also, OK TLR4 participates in these events, because upon TLR4 knock-down, pre-incubated P.gingivalis no longer stimulated OK migration. Discussion We provide here for the first time insight to the consequences of direct interaction between P.gingivalis and H.pylori. In doing so, we shed light on the mechanism by which H. pylori presence in the oral cavity increases the severity or progression of periodontitis.
Collapse
Affiliation(s)
- Cristopher Soto
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (Accdis), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Victoria Rojas
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (Accdis), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Lucas Yáñez
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Antonio Hidalgo
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (Accdis), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Marcela Olivera
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Martín Pacheco
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Darna Venegas
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Daniela Salinas
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Denisse Bravo
- Oral Microbiology Laboratory, Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Andrew F.G. Quest
- Cellular Communication Laboratory, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (Accdis), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
4
|
Lu Y, Shen Y, Li L, Zhang M, Wang M, Ge L, Yang J, Tang X. Clinicopathological Significance of FOXO4 Expression and Correlation with Prx1 in Head and Neck Squamous Cell Carcinoma. Anal Cell Pathol (Amst) 2021; 2021:5510753. [PMID: 34055579 PMCID: PMC8149257 DOI: 10.1155/2021/5510753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 05/07/2021] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Forkhead box O 4 (FOXO4), a key albumen in the forkhead box O (FOXOs) family, plays crucial roles as a tumor suppressor in the cancer development. In our previous study, Peroxiredoxin1 (Prx1) promoted the development of oral cancer and was predicted to bind to FOXO4. The aim of this study was to investigate the clinicopathological significance of FOXO4 expression and its potential mechanism in head and neck squamous cell carcinomas (HNSCC). METHODS The function of FOXO4 correlation with HNSCC prognosis was analyzed via ONCOMINE, UALCAN, Human Protein Atlas, and cBioPortal. The expression of FOXO4 was detected in Prx1 silenced CaL27 and SCC9 cell lines by Western blot. FOXO4 protein expression was observed via immunohistochemistry (IHC) and the binding of Prx1 to FOXO4 measured by Duolink analysis in a 4-nitro-quinoline-1-oxide- (4NQO-) induced tongue carcinogenesis model in Prx1+/+ and Prx1+/- mice. RESULTS By the analysis of Bioinformation Databases, there was a significant interaction of FOXO4 down expression to clinical tumor stages and pathological grades in the patients with HNSCC. Reduced mRNA and protein expression of FOXO4 were found to be significantly correlated with the poor overall survival (OS) of HNSCC patients. FOXO4 expression is negatively related to Prx1 significantly in HNSCC tissues. By employing a 4NQO-induced oral carcinogenesis mouse model, we confirmed that FOXO4 expression was reduced in 4NQO-induced squamous cell carcinoma (SCC) tongue tissues compared with those in normal tissues. Prx1 knockdown resulted in the upregulation of FOXO4 expression in the SCC tissues and CaL27 and SCC9 cell lines. Furthermore, the interaction of Prx1 with FOXO4 was observed in mouse tongue tissues by Duolink analysis. CONCLUSION FOXO4 plays an important role in the development of HNSCC. The lower expression of FOXO4 is significantly correlated with the shorter OS in patients with HNSCC. FOXO4 is negatively regulated via interaction with Prx1. FOXO4 could be a potential molecular target for the treatment and prognosis of HNSCC.
Collapse
Affiliation(s)
- Yunping Lu
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Yajun Shen
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Lingyu Li
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Min Zhang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Min Wang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Lihua Ge
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Jing Yang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, No. 4 Tiantanxili, Dongcheng District, Beijing 100050, China
| |
Collapse
|
5
|
Lu Y, Li L, Chen H, Jing X, Wang M, Ge L, Yang J, Zhang M, Tang X. Peroxiredoxin1 Knockdown Inhibits Oral Carcinogenesis via Inducing Cell Senescence Dependent on Mitophagy. Onco Targets Ther 2021; 14:239-251. [PMID: 33469304 PMCID: PMC7812030 DOI: 10.2147/ott.s284182] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Purpose Cellular senescence is a physiological phenomenon by which cells irreversibly lose their proliferative potential. It is not clear whether senescent cells are related to malignant transformation in oral precancerous lesions. The role of peroxiredoxin1 (Prx1)-induced cell senescence in OLK malignant transformation has not been reported. The aim of this study is to investigate the role and mechanism of cell senescence in oral carcinogenesis. Methods In this study, 4-nitro-quinoline-1-oxide (4NQO) induced tongue carcinogenesis model in Prx1+/+ and Prx1+/- mice and dysplastic oral keratinocyte (DOK) were used. Prx1 knockdown DOK cells were harvested with shRNA injection, and cell senescence was detected via the senescence-associated β-galactosidase (SA β-gal) assay. The senescence and mitophagy-related proteins were observed by immunohistochemistry (IHC), Western blot and qRT-PCR. The binding of Prx1 with prohibitin 2 (PHB2) and light chain 3 (LC3) was predicted via ZDOCK and measured in mice by Duolink analysis. Results Histologically, 4NQO treatment induced epithelial hyperplasia, dysplasia (mild, moderate and severe), carcinomas in situ and oral squamous cell carcinoma (OSCC) in mouse tongue mucosa. The malignant transformation rate in Prx1+/- mice (37.5%) was significantly lower compared with Prx1+/+ mice (57.1%). In Prx1+/+ mice, a higher number of senescent cells and greater expression of p53 and p21 were observed in hyperplastic and dysplastic tongue tissues when compared with those in OSCC tissues. Prx1 knockdown induced a greater number of senescent cells in hyperplastic tissues, and DOK cells accompanied cell cycle arrest at the G1 phase and PHB2/LC3II downregulation. Prx1 was predicted to dock with PHB2 and LC3 via ZDOCK, and the interactions were confirmed by in situ Duolink analysis. Conclusion Prx1 silencing inhibits the oral carcinogenesis by inducing cell senescence dependent on mitophagy.
Collapse
Affiliation(s)
- Yunping Lu
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lingyu Li
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Hui Chen
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xinying Jing
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Min Wang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Lihua Ge
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Jing Yang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Min Zhang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital & School of Stomatology, Capital Medical University, Beijing 100050, People's Republic of China
| |
Collapse
|
6
|
β-Elemene enhances radiosensitivity in non-small-cell lung cancer by inhibiting epithelial-mesenchymal transition and cancer stem cell traits via Prx-1/NF-kB/iNOS signaling pathway. Aging (Albany NY) 2020; 13:2575-2592. [PMID: 33316778 PMCID: PMC7880315 DOI: 10.18632/aging.202291] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/03/2020] [Indexed: 12/14/2022]
Abstract
Radiation therapy is widely used to treat a variety of malignant tumors, including non-small-cell lung cancer (NSCLC). However, ionizing radiation (IR) paradoxically promotes radioresistance, metastasis and recurrence by inducing epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs). Here, we developed two NSCLC radioresistant (RR) cell lines (A549-RR and H1299-RR) and characterized their motility, cell cycle distribution, DNA damage, and CSC production using migration/invasion assays, flow cytometry, comet assays, and sphere formation, respectively. We also evaluated their tumorigenicity in vivo using a mouse xenograft model. We found that invasion and spheroid formation by A549-RR and H1299-RR cells were increased as compared to their parental cells. Furthermore, as compared to radiation alone, the combination of β-elemene administration with radiation increased the radiosensitivity of A549 cells and reduced expression of EMT/CSC markers while inhibiting the Prx-1/NF-kB /iNOS signaling pathway. Our findings suggest that NSCLC radioresistance is associated with EMT, enhanced CSC phenotypes, and activation of the Prx-1/NF-kB/iNOS signaling pathway. They also suggest that combining β-elemene with radiation may be an effective means of overcoming radioresistance in NSCLC.
Collapse
|
7
|
Sharapov MG, Gudkov SV. Peroxiredoxin 1 - Multifunctional antioxidant enzyme, protects from oxidative damages and increases the survival rate of mice exposed to total body irradiation. Arch Biochem Biophys 2020; 697:108671. [PMID: 33181129 DOI: 10.1016/j.abb.2020.108671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/18/2020] [Accepted: 11/05/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Peroxiredoxin 1 (Prx1) is known to be a multifunctional antioxidant enzyme playing an essential role in protecting the organism against oxidative stress. We hypothesized that administration of exogenous recombinant Prx1 may provide additional protection of the mammalian organism during the development of acute oxidative stress induced by ionizing radiation. Hence, the aim of the present work was to study the radioprotective properties of exogenous Prx1. MATERIALS AND METHODS Recombinant Prx1 was obtained by genetic engineering. The properties of Prx1 were studied using physicochemical methods. An immunoblotting and ELISA were used for the determination of the level of endogenous and exogenous Prx1 in animal blood. The survival rate of irradiated animals was assessed for 30 days with various modes of administration (intraperitoneal, intramuscular, intravenously) Prx1. Using a hematological analyzer and microscopic analysis, the changes in the level of leukocytes and platelets were assessed in animals that received and did not receive an intravenous injection of Prx1 before irradiation. Genoprotective properties of Prx1 were confirmed by micronucleus test. Real-time PCR was used to investigate the effect of Prx1 on the expression of genes involved in response to oxidative stress. RESULTS Recombinant Prx1 was shown to significantly reduce oxidative damage to biological macromolecules. Prx1 is an effective radioprotector which decreases the severity of radiation-induced leuko- and thrombocytopenia, plus protects bone marrow cells from damage. The half-life of Prx1 in the bloodstream is more than 1 h, while within 1 h there is a loss of the antioxidant activity of Prx1 by almost 50%, which limits its use long (2 h) before irradiation. The introduction of Prx1 after irradiation has no significant radiomitigating effect. The most effective way of using Prx1 is intravenous administration shortly (15-30 min) before exposure to ionizing radiation, with a dose reduction factor of 1.3. Under the action of ionizing radiation a dose-dependent appearance of endogenous Prx1 in the bloodstream was also observed. The appearance of Prx1 in the bloodstream alters the expression of stress response genes (especial antioxidant response and DNA repair) in the cells of red bone marrow, promoting the activation of repair processes. CONCLUSION The recombinant Prx1 can be considered as an effective radioprotector for minimizing the risks of injury of animal's body by ionizing radiation.
Collapse
Affiliation(s)
- Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, PSCBR RAS, Pushchino, Russia.
| | - Sergey V Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
8
|
Comparative Study of Protective Action of Exogenous 2-Cys Peroxiredoxins (Prx1 and Prx2) Under Renal Ischemia-Reperfusion Injury. Antioxidants (Basel) 2020; 9:antiox9080680. [PMID: 32751232 PMCID: PMC7465264 DOI: 10.3390/antiox9080680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/10/2020] [Accepted: 07/27/2020] [Indexed: 01/09/2023] Open
Abstract
The pathogenesis of ischemia-reperfusion (I/R) injuries is based on oxidative stress caused by a sharp increase in the concentration of free radicals, reactive oxygen species (ROS) and secondary products of free radical oxidation of biological macromolecules during reperfusion. Application of exogenous antioxidants lowers the level of ROS in the affected tissues, suppresses or adjusts the course of oxidative stress, thereby substantially reducing the severity of I/R injury. We believe that the use of antioxidant enzymes may be the most promising line of effort since they possess higher efficiency than low molecular weight antioxidants. Among antioxidant enzymes, of great interest are peroxiredoxins (Prx1–6) which reduce a wide range of organic and inorganic peroxide substrates. In an animal model of bilateral I/R injury of kidneys (using histological, biochemical, and molecular biological methods) it was shown that intravenous administration of recombinant typical 2-Cys peroxiredoxins (Prx1 and Prx2) effectively reduces the severity of I/R damage, contributing to the normalization of the structural and functional state of the kidneys and an almost 2-fold increase in the survival of experimental animals. The use of recombinant Prx1 or Prx2 can be an efficient approach for the prevention and treatment of renal I/R injury.
Collapse
|
9
|
Sharapov MG, Fesenko EE, Novoselov VI. The Role of Peroxiredoxins in Various Diseases Caused by Oxidative Stress and the Prospects of Using Exogenous Peroxiredoxins. Biophysics (Nagoya-shi) 2018. [DOI: 10.1134/s0006350918040164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|