1
|
Soh LJ, Lee SY, Roebuck MM, Wong PF. Unravelling the interplay between ER stress, UPR and the cGAS-STING pathway: Implications for osteoarthritis pathogenesis and treatment strategy. Life Sci 2024; 357:123112. [PMID: 39378929 DOI: 10.1016/j.lfs.2024.123112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/20/2024] [Accepted: 10/03/2024] [Indexed: 10/10/2024]
Abstract
Osteoarthritis (OA) is a debilitating chronic degenerative disease affecting the whole joint organ leading to pain and disability. Cellular stress and injuries trigger inflammation and the onset of pathophysiological changes ensue after irreparable damage and inability to resolve inflammation, impeding the completion of the healing process. Extracellular matrix (ECM) degradation leads to dysregulated joint tissue metabolism. The reparative effort induces the proliferation of hypertrophic chondrocytes and matrix protein synthesis. Aberrant protein synthesis leads to endoplasmic reticulum (ER) stress and chondrocyte apoptosis with consequent cartilage matrix loss. These events in a vicious cycle perpetuate inflammation, hindering the restoration of normal tissue homeostasis. Recent evidence suggests that inflammatory responses and chondrocyte apoptosis could be caused by the activation of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling axis in response to DNA damage. It has been reported that there is a crosstalk between ER stress and cGAS-STING signalling in cellular senescence and other diseases. Based on recent evidence, this review discusses the role of ER stress, Unfolded Protein Response (UPR) and cGAS-STING pathway in mediating inflammatory responses in OA.
Collapse
Affiliation(s)
- Li-Jen Soh
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Siam-Yee Lee
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Margaret M Roebuck
- Department of Musculoskeletal & Ageing Science, Institute of Life Course & Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK; Department of Molecular and Clinical Cancer Medicine, Institute of Translational Medicine, University of Liverpool, Liverpool L3 9TA, UK
| | - Pooi-Fong Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
2
|
Ingangi V, De Chiara A, Ferrara G, Gallo M, Catapano A, Fazioli F, Di Carluccio G, Peranzoni E, Marigo I, Carriero MV, Minopoli M. Emerging Treatments Targeting the Tumor Microenvironment for Advanced Chondrosarcoma. Cells 2024; 13:977. [PMID: 38891109 PMCID: PMC11171855 DOI: 10.3390/cells13110977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/28/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chondrosarcoma (ChS), a malignant cartilage-producing tumor, is the second most frequently diagnosed osseous sarcoma after osteosarcoma. It represents a very heterogeneous group of malignant chemo- and radiation-resistant neoplasms, accounting for approximately 20% of all bone sarcomas. The majority of ChS patients have a good prognosis after a complete surgical resection, as these tumors grow slowly and rarely metastasize. Conversely, patients with inoperable disease, due to the tumor location, size, or metastases, represent a great clinical challenge. Despite several genetic and epigenetic alterations that have been described in distinct ChS subtypes, very few therapeutic options are currently available for ChS patients. Therefore, new prognostic factors for tumor progression as well as new treatment options have to be explored, especially for patients with unresectable or metastatic disease. Recent studies have shown that a correlation between immune infiltrate composition, tumor aggressiveness, and survival does exist in ChS patients. In addition, the intra-tumor microvessel density has been proven to be associated with aggressive clinical behavior and a high metastatic potential in ChS. This review will provide an insight into the ChS microenvironment, since immunotherapy and antiangiogenic agents are emerging as interesting therapeutic options for ChS patients.
Collapse
Affiliation(s)
- Vincenzo Ingangi
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Annarosaria De Chiara
- Histopathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (A.D.C.); (G.F.)
| | - Gerardo Ferrara
- Histopathology Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (A.D.C.); (G.F.)
| | - Michele Gallo
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Antonio Catapano
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Flavio Fazioli
- Musculoskeletal Surgery Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (M.G.); (A.C.); (F.F.)
| | - Gioconda Di Carluccio
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Elisa Peranzoni
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (E.P.); (I.M.)
| | - Ilaria Marigo
- Immunology and Molecular Oncology Diagnostics, Veneto Institute of Oncology IOV-IRCCS, 35128 Padua, Italy; (E.P.); (I.M.)
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padua, Italy
| | - Maria Vincenza Carriero
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| | - Michele Minopoli
- Preclinical Models of Tumor Progression Unit, Istituto Nazionale Tumori IRCCS ‘Fondazione G. Pascale’, 80131 Naples, Italy; (V.I.); (G.D.C.); (M.M.)
| |
Collapse
|
3
|
Kulesza M, Kicman A, Motyka J, Guszczyn T, Ławicki S. Importance of Metalloproteinase Enzyme Group in Selected Skeletal System Diseases. Int J Mol Sci 2023; 24:17139. [PMID: 38138968 PMCID: PMC10743273 DOI: 10.3390/ijms242417139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/24/2023] Open
Abstract
Bone tissue is a dynamic structure that is involved in maintaining the homeostasis of the body due to its multidirectional functions, such as its protective, endocrine, or immunological role. Specialized cells and the extracellular matrix (ECM) are responsible for the remodeling of specific bone structures, which alters the biomechanical properties of the tissue. Imbalances in bone-forming elements lead to the formation and progression of bone diseases. The most important family of enzymes responsible for bone ECM remodeling are matrix metalloproteinases (MMPs)-enzymes physiologically present in the body's tissues and cells. The activity of MMPs is maintained in a state of balance; disruption of their activity is associated with the progression of many groups of diseases, including those of the skeletal system. This review summarizes the current understanding of the role of MMPs in bone physiology and the pathophysiology of bone tissue and describes their role in specific skeletal disorders. Additionally, this work collects data on the potential of MMPs as bio-markers for specific skeletal diseases.
Collapse
Affiliation(s)
- Monika Kulesza
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Aleksandra Kicman
- Department of Aesthetic Medicine, Medical University of Bialystok, 15267 Bialystok, Poland;
| | - Joanna Motyka
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| | - Tomasz Guszczyn
- Department of Pediatric Orthopaedics and Traumatology, Medical University of Bialystok, 15274 Bialystok, Poland;
| | - Sławomir Ławicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15269 Bialystok, Poland; (M.K.); (J.M.)
| |
Collapse
|
4
|
Son J, Cha H, Lee S, Bae Y, Ryou C, Lee SY. Ursonic acid inhibits migration and invasion of human osteosarcoma cells through the suppression of mitogen-activated protein kinases and matrix metalloproteinases. Mol Biol Rep 2023; 50:4029-4038. [PMID: 36848005 DOI: 10.1007/s11033-023-08333-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
INTRODUCTION Osteosarcoma (OS) is the most common form of bone malignancy. Although contemporary chemotherapy and surgery have improved the prognosis of those with OS, developing new OS therapies has proven difficult for some time. The activation of the matrix metalloproteinase (MMP) and mitogen-activated protein kinase (MAPK) signaling pathways can induce metastasis, which is an obstacle to OS treatment. Ursonic acid (UNA) is a phytochemical with the potential to cure a variety of human ailments, including cancer. METHODS AND RESULTS In this study, we investigated the anti-tumor properties of UNA in MG63 cells. We conducted colony formation assay, wound healing assay, and Boyden chamber assays to investigate the anti-OS effects of UNA. UNA was found to significantly inhibit the proliferative, migratory, and invasive abilities of MG63 cells. This bioactivity of UNA was mediated by the inhibition of extracellular signal-regulated kinase (ERK) and p38 and reduction of MMP-2 transcriptional expression as observed in western blot analysis, gelatin zymography and RT-PCR. Anti-OS activities of UNA were also observed in Saos2 and U2OS cells, indicating that its anti-cancer properties are not specific to cell types. CONCLUSION Our findings suggest that UNA has the potential for use in anti-metastatic drugs in the treatment of OS.
Collapse
Affiliation(s)
- Juhyeon Son
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Hansol Cha
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Sungeun Lee
- Department of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi, Korea
| | - Yongwoong Bae
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea
| | - Chongsuk Ryou
- Department of Pharmacy and Institute of Pharmaceutical Sciences and Technology, Hanyang University, Ansan, Gyeonggi, Korea
| | - Sang Yeol Lee
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam, 13120, Gyeonggi, Korea.
| |
Collapse
|
5
|
A comprehensive insight into the antineoplastic activities and molecular mechanisms of deoxypodophyllotoxin: Recent trends, challenges, and future outlook. Eur J Pharmacol 2022; 928:175089. [PMID: 35688183 DOI: 10.1016/j.ejphar.2022.175089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
Abstract
Lignans constitute an important group of polyphenols, which have been demonstrated to potently suppress cancer cell proliferation. Numerous in vitro and in vivo studies indicate that deoxypodophyllotoxin as a natural lignan possesses potent anticancer activities against various types of human cancer. The purpose of current review is to provide the reader with the latest findings in understanding the anticancer effects and molecular mechanisms of deoxypodophyllotoxin. This review comprehensively describes the influence of deoxypodophyllotoxin on signaling cascades and molecular targets implicated in cancer cell proliferation and invasion. A number of various signaling molecules and pathways, including apoptosis, necroptosis, cell cycle, angiogenesis, vascular disruption, ROS, MMPs, glycolysis, and microtubules as well as NF-κB, PI3K/Akt/mTOR, and MAPK cascades have been reported to be responsible for the anticancer activities of deoxypodophyllotoxin. The results of present review suggest that the cyclolignan deoxypodophyllotoxin can be developed as a novel and potent anticancer agent, especially as an alternative option for treatment of resistant tumors to chemotherapy.
Collapse
|
6
|
Choudhary P, Roy T, Chatterjee A, Mishra VK, Pant S, Swarnakar S. Melatonin rescues swim stress induced gastric ulceration by inhibiting matrix metalloproteinase-3 via down-regulation of inflammatory signaling cascade. Life Sci 2022; 297:120426. [PMID: 35218765 DOI: 10.1016/j.lfs.2022.120426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 11/29/2022]
Abstract
AIM This study investigated the link between forced swim induced acute gastric ulceration, inflammation and MMP-3 along with the possible mechanism of protective efficacy of melatonin. MAIN METHODS We distributed Balb/c mice into four different groups. Group 1 and 2 were given PBS gavage. Group 3 and 4 were given melatonin (60 mg/kg b.wt.) and omeprazole (25 mg/kg b.wt.), respectively, an hour prior to forced swim. Ulcer index, tissue histology, immunohistochemistry, protein carbonylation, lipid peroxidation, Myeloperoxidase, Zymography, Western blotting, reactive oxygen species (ROS), mitochondrial dehydrogenase, mitochondrial transmembrane potential and bioinformatical analysis were performed. KEY FINDINGS Our data revealed that gastric ulceration due to forced swim stress is responsible for overproduction of ROS, which may be a prime reason for mitochondrial dysfunction and induction of apoptosis via activation of Caspase-3. ROS is also responsible for p38 phosphorylation which in turn increases the activity of MMP-3 in ulcerated milieu, along with the oxidation of proteins, peroxidation of lipids and altered expression patterns of heat shock protein (HSP)-70. Melatonin is shown to reduce the inflammatory burden in gastric milieu and offers gastroprotection by binding to the active site of MMP-3; thereby inhibiting its activity, as suggested by in silico studies. Melatonin also inhibits the downregulation of HSP-70 and activates p38 dephosphorylation and thereby, it rescues gastric mucosal cells from stress-induced ulceration. SIGNIFICANCE Our findings suggest that, melatonin imparts its gastroprotective effect by down-regulating the activation of MAPK-ERK pathway along with binding to the active site of MMP-3.
Collapse
Affiliation(s)
- Preety Choudhary
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Tapasi Roy
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Abhishek Chatterjee
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Vineet Kumar Mishra
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Suyash Pant
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, Kolkata, West Bengal, India
| | - Snehasikta Swarnakar
- Inflammatory Diseases and Immunology division, CSIR-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Jadavpur, Kolkata 700032, West Bengal, India.
| |
Collapse
|
7
|
Chen YY, Yan XJ, Jiang XH, Lu FL, Yang XR, Li DP. Vicenin 3 ameliorates ECM degradation by regulating the MAPK pathway in SW1353 chondrocytes. Exp Ther Med 2021; 22:1461. [PMID: 34737801 PMCID: PMC8561762 DOI: 10.3892/etm.2021.10896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/23/2021] [Indexed: 11/06/2022] Open
Abstract
Aberrant destruction of the articular extracellular matrix (ECM) has been considered to be one of the pathological features of osteoarthritis (OA) which results in chondrocyte changes and articular cartilage degeneration. The MAPK signaling pathway serves a key role by releasing cartilage-degrading enzymes from OA chondrocytes. However, the use of MAPK inhibitors for OA is hindered by their potential long-term toxicity. Vicenin 3 is one of the major components of the Jian-Gu injection which is effective in the clinical treatment of OA. However, its potential impact on OA remain poorly understood. Therefore, the present study aimed to assess the effects of vicenin 3 on interleukin (IL)-1β-treated SW1353 chondrocytes, which mimic the microenvironment of OA. These chondrocytes were pretreated with vicenin 3 (0, 5 and 20 µM) for 1 h and subsequently stimulated with IL-1β (10 ng/ml) for 24 h. Nitric oxide (NO) production was measured using the Griess reaction, whereas the production of prostaglandin E2 (PGE2), matrix metalloproteinases (MMPs), A disintegrin-like and metalloproteinase with thrombospondin motifs (ADAMTSs), collagen type II and aggrecan were measured using ELISA. The mRNA expression of MMPs and ADAMTSs were measured using reverse transcription-quantitative PCR. The protein expression levels of MAPK were measured using western blotting. Vicenin 3 was found to significantly inhibit IL-1β-induced production of NO and PGE. Increments in the expression levels of MMP-1, MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5 induced by IL-1β, in addition to the IL-1β-induced degradation of collagen type II and aggrecan, were all reversed by vicenin 3 treatment. Furthermore, vicenin 3 suppressed IL-1β-stimulated MAPK activation, an effect that was similar to that exerted by SB203580, a well-known p38 MAPK inhibitor. In conclusion, vicenin 3 may confer therapeutic potential similar to that of the p38 MAPK inhibitor for the treatment of OA.
Collapse
Affiliation(s)
- Yue-Yuan Chen
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Xiao-Jie Yan
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Xiao-Hua Jiang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Feng-Lai Lu
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Xue-Rong Yang
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| | - Dian-Peng Li
- Guangxi Key Laboratory of Functional Phytochemicals Research and Utilization, Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin, Guangxi 541006, P.R. China
| |
Collapse
|
8
|
Jahr H, Gunes S, Kuhn AR, Nebelung S, Pufe T. Bioreactor-Controlled Physoxia Regulates TGF-β Signaling to Alter Extracellular Matrix Synthesis by Human Chondrocytes. Int J Mol Sci 2019; 20:ijms20071715. [PMID: 30959909 PMCID: PMC6480267 DOI: 10.3390/ijms20071715] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 02/05/2023] Open
Abstract
Culturing articular chondrocytes under physiological oxygen tension exerts positive effects on their extracellular matrix synthesis. The underlying molecular mechanisms which enhance the chondrocytic phenotype are, however, still insufficiently elucidated. The TGF-β superfamily of growth factors, and the prototypic TGF-β isoforms in particular, are crucial in maintaining matrix homeostasis of these cells. We employed a feedback-controlled table-top bioreactor to investigate the role of TGF-β in microtissues of human chondrocytes over a wider range of physiological oxygen tensions (i.e., physoxia). We compared 1%, 2.5%, and 5% of partial oxygen pressure (pO2) to the ‘normoxic’ 20%. We confirmed physoxic conditions through the induction of marker genes (PHD3, VEGF) and oxygen tension-dependent chondrocytic markers (SOX9, COL2A1). We identified 2.5% pO2 as an oxygen tension optimally improving chondrocytic marker expression (ACAN, COL2A1), while suppressing de-differentiation markers (COL1A1,COL3A1). Expression of TGF-β isoform 2 (TGFB2) was, relatively, most responsive to 2.5% pO2, while all three isoforms were induced by physoxia. We found TGF-β receptors ALK1 and ALK5 to be regulated by oxygen tension on the mRNA and protein level. In addition, expression of type III co-receptors betaglycan and endoglin appeared to be regulated by oxygen tension as well. R-Smad signaling confirmed that physoxia divergently regulated phosphorylation of Smad1/5/8 and Smad2/3. Pharmacological inhibition of canonical ALK5-mediated signaling abrogated physoxia-induced COL2A1 and PAI-1 expression. Physoxia altered expression of hypertrophy markers and that of matrix metalloproteases and their activity, as well as expression ratios of specific proteins (Sp)/Krüppel-like transcription factor family members SP1 and SP3, proving a molecular concept of ECM marker regulation. Keeping oxygen levels tightly balanced within a physiological range is important for optimal chondrocytic marker expression. Our study provides novel insights into transcriptional regulations in chondrocytes under physoxic in vitro conditions and may contribute to improving future cell-based articular cartilage repair strategies.
Collapse
Affiliation(s)
- Holger Jahr
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
- Department of Orthopaedic Surgery, Maastricht University Medical Centre+, 6229 HXMaastricht, The Netherlands.
| | - Seval Gunes
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| | - Annika-Ricarda Kuhn
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, Aachen University Hospital, 52072 Aachen, Germany.
| | - Thomas Pufe
- Institute of Anatomy and Cell Biology, University Hospital Aachen, 52072 Aachen, Germany.
| |
Collapse
|