1
|
Frisk NLS, Sørensen AE, Pedersen OBV, Dalgaard LT. Circulating microRNAs for Early Diagnosis of Ovarian Cancer: A Systematic Review and Meta-Analysis. Biomolecules 2023; 13:871. [PMID: 37238740 PMCID: PMC10216356 DOI: 10.3390/biom13050871] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
In this study, we conducted a systematic review and meta-analysis to summarize and evaluate the global research potential of different circulating miRNAs as an early diagnostic biomarker for OC. A systematic literature search for relevant studies was conducted in June 2020 and followed up in November 2021. The search was conducted in English databases (PubMed, ScienceDirect). The primary search resulted in a total of 1887 articles, which were screened according to the prior established inclusion and exclusion criteria. We identified 44 relevant studies, of which 22 were eligible for the quantitative meta-analysis. Statistical analysis was performed using the Meta-package in Rstudio. Standardized mean differences (SMD) of relative levels between control subjects and OC patients were used to evaluate the differential expression. All studies were quality evaluated using a Newcastle-Ottawa Scale. Based on the meta-analysis, nine miRNAs were identified as dysregulated in OC patients compared to controls. Nine were upregulated in OC patients compared to controls (miR-21, -125, -141, -145, -205, -328, -200a, -200b, -200c). Furthermore, miR-26, -93, -106 and -200a were analyzed, but did not present an overall significant difference between OC patients and controls. These observations should be considered when performing future studies of circulating miRNAs in relation to OC: sufficient size of clinical cohorts, development of consensus guidelines for circulating miRNA measurements, and coverage of previously reported miRNAs.
Collapse
Affiliation(s)
- Nanna Lond Skov Frisk
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
| | - Anja Elaine Sørensen
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| | - Ole Birger Vesterager Pedersen
- Department of Clinical Immunology, Zealand University Hospital, Køge, Ringstedgade 77B, 4700 Næstved, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Blegdamsvej 3, 2200 Copenhagen N, Denmark
| | - Louise Torp Dalgaard
- Department of Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark
| |
Collapse
|
2
|
Gong X, Zhang Y, Ai J, Li K. Application of Single-Cell RNA Sequencing in Ovarian Development. Biomolecules 2022; 13:47. [PMID: 36671432 PMCID: PMC9855652 DOI: 10.3390/biom13010047] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/28/2022] Open
Abstract
The ovary is a female reproductive organ that plays a key role in fertility and the maintenance of endocrine homeostasis, which is of great importance to women's health. It is characterized by a high heterogeneity, with different cellular subpopulations primarily containing oocytes, granulosa cells, stromal cells, endothelial cells, vascular smooth muscle cells, and diverse immune cell types. Each has unique and important functions. From the fetal period to old age, the ovary experiences continuous structural and functional changes, with the gene expression of each cell type undergoing dramatic changes. In addition, ovarian development strongly relies on the communication between germ and somatic cells. Compared to traditional bulk RNA sequencing techniques, the single-cell RNA sequencing (scRNA-seq) approach has substantial advantages in analyzing individual cells within an ever-changing and complicated tissue, classifying them into cell types, characterizing single cells, delineating the cellular developmental trajectory, and studying cell-to-cell interactions. In this review, we present single-cell transcriptome mapping of the ovary, summarize the characteristics of the important constituent cells of the ovary and the critical cellular developmental processes, and describe key signaling pathways for cell-to-cell communication in the ovary, as revealed by scRNA-seq. This review will undoubtedly improve our understanding of the characteristics of ovarian cells and development, thus enabling the identification of novel therapeutic targets for ovarian-related diseases.
Collapse
Affiliation(s)
| | | | - Jihui Ai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kezhen Li
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
3
|
Liu C, Gao R, Tang Y, Chen H, Zhang X, Sun Y, Zhao Q, Lv P, Wang H, Ye-Lehmann S, Liu J, Chen C. Identification of potential key circular RNAs related to cognitive impairment after chronic constriction injury of the sciatic nerve. Front Neurosci 2022; 16:925300. [PMID: 36061613 PMCID: PMC9433970 DOI: 10.3389/fnins.2022.925300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic neuropathic pain is commonly accompanied by cognitive impairment. However, the underlying mechanism in the occurrence of cognitive deficits under constant nociceptive irritation remains elusive. Herein, we established a chronic neuropathic pain model by chronic constriction injury (CCI) of the unilateral sciatic nerve in rats. Behavioral tests indicated that CCI rats with long-term nociceptive threshold decline developed significant dysfunction of working memory and recognitive memory starting at 14 days and lasting for at least 21 days. Afterward, circRNA expression profiles in the hippocampus of CCI and sham rats were analyzed via high-throughput sequencing to explore the potential key factors associated with cognitive impairment induced by ongoing nociception, which showed 76 differentially expressed circRNAs, 39 upregulated and 37 downregulated, in the CCI group. These differentially expressed circRNA host genes were validated to be primarily associated with inflammation and apoptotic signaling pathways according to GO/KEGG analysis and the circRNA-miRNA-mRNA network, which was also confirmed through the analysis of neuroinflammation and neuronal apoptosis. Consequently, we assumed that enhanced neuroinflammation and neuronal apoptosis might act as potential regulators of cognitive impairment induced by chronic neuropathic pain. The identification of the regulatory mechanism would provide promising clinical biomarkers or therapeutic targets in the diagnostic prediction and intervention treatment of memory deficits under neuropathic pain conditions.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Rui Gao
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yidan Tang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Hai Chen
- Targeted Tracer Research and Development Laboratory, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Xueying Zhang
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Yalan Sun
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Qi Zhao
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Peilin Lv
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Haiyang Wang
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixin Ye-Lehmann
- Unité INSERM U1195, Hôpital de Bicêtre, Université Paris-Saclay, Paris, France
| | - Jin Liu
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu, China
- *Correspondence: Chan Chen, ,
| |
Collapse
|
4
|
Jain N, Gupta P, Sahoo S, Mallick B. Non-coding RNAs and their cross-talks impacting reproductive health of women. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1695. [PMID: 34825502 DOI: 10.1002/wrna.1695] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/02/2021] [Accepted: 09/10/2021] [Indexed: 12/26/2022]
Abstract
Non-coding RNAs (ncRNAs) work as crucial posttranscriptional modulators of gene expression regulating a wide array of biological processes that impact normal physiology, including reproductive health. The health of women, especially reproductive health, is now a prime focus of society that ensures the females' overall physical, social, and mental well-being. Furthermore, there has been a growing cognizance of ncRNAs' possible applications in diagnostics and therapeutics of dreaded diseases. Hence, understanding the functions and mode of actions of ncRNAs in the context of women's health will allow us to develop effective prognostic and therapeutic strategies that will enhance the quality of life of women. Herein, we summarize recent progress on ncRNAs, such as microRNAs (miRNAs) and long ncRNAs (lncRNAs), and their implications in reproductive health by tying the knot with lifestyle factors that affect fertility complications, pregnancy outcomes, and so forth. We also discourse the interplay among the RNA species, especially miRNAs, lncRNAs, and protein-coding RNAs, through the competing endogenous RNA regulations in diseases of women associated with maternal and fetal health. This review provides new perspectives correlating ncRNAs, lifestyle, and reproductive health of women, which will attract future studies to improve women's lives. This article is categorized under: RNA in Disease and Development > RNA in Disease Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs.
Collapse
Affiliation(s)
- Neha Jain
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Pooja Gupta
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Swapnil Sahoo
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Bibekanand Mallick
- RNAi and Functional Genomics Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
5
|
Montjean D, Neyroud AS, Yefimova MG, Benkhalifa M, Cabry R, Ravel C. Impact of Endocrine Disruptors upon Non-Genetic Inheritance. Int J Mol Sci 2022; 23:3350. [PMID: 35328771 PMCID: PMC8950994 DOI: 10.3390/ijms23063350] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Similar to environmental factors, EDCs (endocrine-disrupting chemicals) can influence gene expression without modifying the DNA sequence. It is commonly accepted that the transgenerational inheritance of parentally acquired traits is conveyed by epigenetic alterations also known as "epimutations". DNA methylation, acetylation, histone modification, RNA-mediated effects and extracellular vesicle effects are the mechanisms that have been described so far to be responsible for these epimutations. They may lead to the transgenerational inheritance of diverse phenotypes in the progeny when they occur in the germ cells of an affected individual. While EDC-induced health effects have dramatically increased over the past decade, limited effects on sperm epigenetics have been described. However, there has been a gain of interest in this issue in recent years. The gametes (sperm and oocyte) represent targets for EDCs and thus a route for environmentally induced changes over several generations. This review aims at providing an overview of the epigenetic mechanisms that might be implicated in this transgenerational inheritance.
Collapse
Affiliation(s)
- Debbie Montjean
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
| | - Anne-Sophie Neyroud
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
| | - Marina G. Yefimova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St-Petersburg, Russia;
| | - Moncef Benkhalifa
- Fertilys Fertility Center, 1950 Rue Maurice-Gauvin #103, Laval, QC H7S 1Z5, Canada;
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Rosalie Cabry
- Médecine et Biologie de la Reproduction, CECOS de Picardie, CHU Amiens, 80054 Amiens, France;
- UFR de Médecine, Université de Picardie Jules Verne, 80054 Amiens, France
- Peritox, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, 80054 Amiens, France
| | - Célia Ravel
- CHU de Rennes, Département de Gynécologie Obstétrique et Reproduction Humaine-CECOS, Hôpital Sud, 16 Boulevard de Bulgarie, 35000 Rennes, France;
- CHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail)—UMR_S 1085, University Rennes, 35000 Rennes, France
| |
Collapse
|
6
|
Li G, Wang Y, Wang J, Chen G, Wang H. Long non-coding RNA placenta‑specific protein 2 regulates micorRNA-19a/tumor necrosis factor α to participate in polycystic ovary syndrome. Bioengineered 2022; 13:856-862. [PMID: 34967266 PMCID: PMC8805902 DOI: 10.1080/21655979.2021.2013722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 01/21/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is a type of hormonal disorder that affects about 5-20% of females at their reproductive age worldwide. MicorRNA-19a (miR-19a) is a well-characterized miRNA in cancer biology and its function is mainly mediated by targeting tumor necrosis factor α (TNF-α), which plays critical roles in PCOS. Our preliminary analysis predicted the potential interaction between miR-19a and long non-coding RNA (lncRNA) placenta‑specific protein 2 (PLAC2). Therefore, this study aimed to explore the role of PLAC2 in PCOS. Ovarian tissues were collected from 62 PCOS patients and 62 healthy females. Granulosa-like tumor cells (KGN) was prepared, and transient transfections was conducted. Dual-luciferase activity assay was used to investigate the interaction between PLAC2 and miR-19a. qPCR assays were performed for the expression analysis of miR-19a/TNF-α. In addition, Western blot analysis and cell apoptosis assay were conducted. The results showed that PLAC2 was upregulated in PCOS. PLAC2 and miR-19a showed a direct interaction, while overexpression of PLAC2 and miR-19a did not affect the expression of each other in KGN cells. Instead, overexpression of PLAC2 led to upregulated TNF-α, which is a target of miR-19a. Cell apoptosis analysis showed that PLAC2 and TNF-α promoted the apoptosis of KGN cells. Overexpression of miR-19a played an opposite role. In addition, the overexpression of PLAC2 reduced the effects of overexpression of miR-19a. Therefore, PLAC2 may regulate miR-19a/TNF-α to participate in PCOS.
Collapse
Affiliation(s)
- Gang Li
- Department of Obstetrics and Gynecology, Huai ‘An Maternal and Child Health Hospital, Huai ‘An City, PR. China
| | - Yongli Wang
- Global Health Institute, Xi’an Jiaotong University, Xian City, PR. China
| | - Jingyuan Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Xi’an Jiaotong University, Xian City, PR. China
| | - Gong Chen
- Department of Obstetrics and Gynecology, Huai ‘An Maternal and Child Health Hospital, Huai ‘An City, PR. China
| | - Haiyan Wang
- Department of Reproductive Medicine, First Affiliated Hospital of Xi’an Jiaotong University, Xian City, PR. China
| |
Collapse
|
7
|
Saral MA, Tuncer SB, Odemis DA, Erdogan OS, Erciyas SK, Saip P, Ozel S, Yazici H. New biomarkers in peripheral blood of patients with ovarian cancer: high expression levels of miR-16-5p, miR-17-5p, and miR-638. Arch Gynecol Obstet 2021; 305:193-201. [PMID: 34370073 DOI: 10.1007/s00404-021-06138-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 06/23/2021] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Ovarian cancer is one of the most fatal gynecologic malignities. miR-16-5p, miR-17-5p, and miR-638 genes were found to have been associated with ovarian cancer in accordance with the data obtained from the previous microarray research performed by Tuncer et al. (J Ovarian Res 13(1):99, 2020). The expression levels of these miRNAs in the peripheral blood samples of 142 ovarian cancer patients, and 97 healthy controls were investigated for performing the validation, and to identify whether these genes were the possible biomarkers to be used in the early diagnosis of high-risk ovarian cancer patients, and in the prognosis of patients. METHODS The miRNA expression analysis was performed using the miRNA-specific cDNA synthesis, and real-time PCR methods following the RNA isolation from the peripheral blood lymphocytes. RESULTS miR-16-5p, miR-17-5p, and miR-638 miRNA gene expression levels were found to have twofold higher expression levels in patient groups compared with the gene expression levels in healthy controls, and were statistically significant (p < 0.05). In addition, the comparison of the miRNA expression levels with the clinical data of patients showed that there was a significant difference with smoking history and the increased expression level of miR-17-5 (p: 0.007). There was a significant difference between the increased expression level of miR-638 with the locally advanced stage, and abdominal/pelvic metastatic patients (p: 0.03). CONCLUSIONS The obtained data suggest that miR-16-5p, miR-17-5p, and miR-638 molecules might be the noninvasive biomarkers in identifying the ovarian cancer. However, the investigation and monitoring of the changeability of these biomarkers in benign ovarian diseases, and during the treatment must be performed in future studies for identifying the accurate diagnostic, and prognostic features of miRNAs.
Collapse
Affiliation(s)
- Mukaddes Avsar Saral
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey.,Health Sciences Institute, Istanbul University, Beyazıt/Fatih, 34452, Istanbul, Turkey.,Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - Seref Bugra Tuncer
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Demet Akdeniz Odemis
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Ozge Sukruoglu Erdogan
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Seda Kilic Erciyas
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey
| | - Pınar Saip
- Department of Medical Oncology in Oncology Institute, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Sevda Ozel
- Department of Biostatistics, Istanbul Faculty of Medicine, Istanbul University, Fatih, 34093, Istanbul, Turkey
| | - Hulya Yazici
- Division of Cancer Genetics, Department of Basic Oncology, Oncology Institute, Istanbul University, Fatih , 34093, Istanbul, Turkey.
| |
Collapse
|
8
|
Ghasemi M, Heidari Nia M, Hashemi M, Keikha N, Fazeli K, Taji O, Naghavi A. An association study of polymorphisms in the H19 imprinted gene in an Iranian population with the risk of polycystic ovary syndrome. Biol Reprod 2020; 103:978-985. [PMID: 32720692 DOI: 10.1093/biolre/ioaa131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 06/12/2020] [Accepted: 07/22/2020] [Indexed: 11/13/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is one of the most common endocrinopathies that causes problems in female fertility at the reproductive age. PCOS is a multifactorial disease, with genetic factors playing a crucial role in its development. H19 is a long non-coding RNA (lncRNA) expressed from the maternal chromosome, which is correlated with PCOS. In this study, 115 women suffering from PCOS and 130 healthy women with regular menstrual cycles were recruited as case and control groups, respectively. After the extraction of genomic DNA, the restriction fragment length polymorphism polymerase chain reaction was employed for genotyping of rs2067051G>A and rs3741219T>C. Statistical analysis was done using SPSS package V.22 for Windows. In silico analysis was recruited to determine the effects of SNPs on the secondary structure of gene transcript as well as miRNA binding sites. The obtained data showed that the A allele of rs2067051G>A was associated with the high risk of PCOS (OR = 2.00, 95%CI = 1.38-2.91, P = 0.00). AG and AA genotypes led to a 3.64- and (about) a five-fold increase in the risk of PCOS, respectively (95%CI = 2.02-6.54, P = 0.00, and 95%CI = 1.51-16.52, P = 0.00, respectively). These variants caused a significant increase in the risk of this disorder in all genotype models except in the recessive model. However, no association was found between rs3741219T>C and the increased risk of PCOS, either in the allele or in the genotype models. According to the findings, rs2067051G>A is associated with an increased risk of PCOS in the Iranian population.
Collapse
Affiliation(s)
- Marzieh Ghasemi
- Department of Obstetrics and Gynecology, Pregnancy Health Research Center, Zahedan, Iran.,Moloud Infertility Center, Ali-ibn-Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Milad Heidari Nia
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Hashemi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Narjes Keikha
- Moloud Infertility Center, Ali-ibn-Abitaleb Hospital, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Kimia Fazeli
- School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Omid Taji
- Medical Genetic Reference Laboratory, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Anoosh Naghavi
- Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Genetics, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
9
|
Wang X, Kong D, Wang C, Ding X, Zhang L, Zhao M, Chen J, Xu X, Hu X, Yang J, Gao S. Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: a systematic review and updated meta-analysis. J Ovarian Res 2019. [PMID: 30898156 DOI: 10.1186/s13048-019-0482-8]+[] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECT Ovarian cancer is the primary cause of cancer-associated deaths among gynaecological malignancies. Increasing evidence suggests that microRNAs may be potential biomarkers for the diagnosis and prognosis of cancer. In this study, we conducted a systematic review and meta-analysis to summarize the global research and to evaluate the overall diagnostic accuracy of miRNAs in detecting ovarian cancer. METHODS A systematic literature search was conducted for relevant studies through July 20, 2017, in English databases (CENTRAL, MEDLINE, and EMBASE), the Grey reference database and Chinese databases. Statistical analysis was conducted using OpenMetaAnalyst, STATA 14.0 and RevMan 5.3. Pooled sensitivity, specificity, and other parameters were used to assess the overall miRNA assay performance using a bivariate random-effects model (BRM). Meta-regression and subgroup analyses were performed to dissect the heterogeneity. Sensitivity analysis was performed to assess the robustness of our analysis, and the publication bias of the selected studies was assessed using Deeks' funnel plot asymmetry test. RESULTS Thirteen articles described 33 studies, including 1081 patients with ovarian cancer and 518 controls. The pooled results were as follows: sensitivity, 0.89 (95% CI: 0.84-0.93); specificity, 0.64 (95% CI: 0.56-0.72); positive likelihood ratio, 2.18 (95% CI: 1.89-2.51); negative likelihood ratio, 0.15 (95% CI: 0.11-0.22); and diagnostic odds ratio (DOR), 13.21 (95% CI: 9.00-19.38). We conducted subgroup analyses based on ethnicity, research design, and miRNA profiling and found that multiple miRNA panels were more accurate in detecting ovarian cancer, with a combined DOR of 30.06 (95% CI: 8.58-105.37). CONCLUSION Per the meta-analysis, circulating miRNAs may be novel and non-invasive biomarkers for detecting ovarian cancer, particularly multiple miRNA panels, which have potential diagnostic value as screening tools in clinical practice.
Collapse
Affiliation(s)
- Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dejiu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Chaokun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xuezhen Ding
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Li Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Mengqi Zhao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jing Chen
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiangyun Xu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaochen Hu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
10
|
Wang X, Kong D, Wang C, Ding X, Zhang L, Zhao M, Chen J, Xu X, Hu X, Yang J, Gao S. Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: a systematic review and updated meta-analysis. J Ovarian Res 2019. [PMID: 30898156 DOI: 10.1186/s13048-019-0482-8] [] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
OBJECT Ovarian cancer is the primary cause of cancer-associated deaths among gynaecological malignancies. Increasing evidence suggests that microRNAs may be potential biomarkers for the diagnosis and prognosis of cancer. In this study, we conducted a systematic review and meta-analysis to summarize the global research and to evaluate the overall diagnostic accuracy of miRNAs in detecting ovarian cancer. METHODS A systematic literature search was conducted for relevant studies through July 20, 2017, in English databases (CENTRAL, MEDLINE, and EMBASE), the Grey reference database and Chinese databases. Statistical analysis was conducted using OpenMetaAnalyst, STATA 14.0 and RevMan 5.3. Pooled sensitivity, specificity, and other parameters were used to assess the overall miRNA assay performance using a bivariate random-effects model (BRM). Meta-regression and subgroup analyses were performed to dissect the heterogeneity. Sensitivity analysis was performed to assess the robustness of our analysis, and the publication bias of the selected studies was assessed using Deeks' funnel plot asymmetry test. RESULTS Thirteen articles described 33 studies, including 1081 patients with ovarian cancer and 518 controls. The pooled results were as follows: sensitivity, 0.89 (95% CI: 0.84-0.93); specificity, 0.64 (95% CI: 0.56-0.72); positive likelihood ratio, 2.18 (95% CI: 1.89-2.51); negative likelihood ratio, 0.15 (95% CI: 0.11-0.22); and diagnostic odds ratio (DOR), 13.21 (95% CI: 9.00-19.38). We conducted subgroup analyses based on ethnicity, research design, and miRNA profiling and found that multiple miRNA panels were more accurate in detecting ovarian cancer, with a combined DOR of 30.06 (95% CI: 8.58-105.37). CONCLUSION Per the meta-analysis, circulating miRNAs may be novel and non-invasive biomarkers for detecting ovarian cancer, particularly multiple miRNA panels, which have potential diagnostic value as screening tools in clinical practice.
Collapse
Affiliation(s)
- Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dejiu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Chaokun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xuezhen Ding
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Li Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Mengqi Zhao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jing Chen
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiangyun Xu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaochen Hu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|
11
|
Wang X, Kong D, Wang C, Ding X, Zhang L, Zhao M, Chen J, Xu X, Hu X, Yang J, Gao S. Circulating microRNAs as novel potential diagnostic biomarkers for ovarian cancer: a systematic review and updated meta-analysis. J Ovarian Res 2019; 12:24. [PMID: 30898156 PMCID: PMC6427862 DOI: 10.1186/s13048-019-0482-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/14/2019] [Indexed: 02/06/2023] Open
Abstract
Object Ovarian cancer is the primary cause of cancer-associated deaths among gynaecological malignancies. Increasing evidence suggests that microRNAs may be potential biomarkers for the diagnosis and prognosis of cancer. In this study, we conducted a systematic review and meta-analysis to summarize the global research and to evaluate the overall diagnostic accuracy of miRNAs in detecting ovarian cancer. Methods A systematic literature search was conducted for relevant studies through July 20, 2017, in English databases (CENTRAL, MEDLINE, and EMBASE), the Grey reference database and Chinese databases. Statistical analysis was conducted using OpenMetaAnalyst, STATA 14.0 and RevMan 5.3. Pooled sensitivity, specificity, and other parameters were used to assess the overall miRNA assay performance using a bivariate random-effects model (BRM). Meta-regression and subgroup analyses were performed to dissect the heterogeneity. Sensitivity analysis was performed to assess the robustness of our analysis, and the publication bias of the selected studies was assessed using Deeks’ funnel plot asymmetry test. Results Thirteen articles described 33 studies, including 1081 patients with ovarian cancer and 518 controls. The pooled results were as follows: sensitivity, 0.89 (95% CI: 0.84–0.93); specificity, 0.64 (95% CI: 0.56–0.72); positive likelihood ratio, 2.18 (95% CI: 1.89–2.51); negative likelihood ratio, 0.15 (95% CI: 0.11–0.22); and diagnostic odds ratio (DOR), 13.21 (95% CI: 9.00–19.38). We conducted subgroup analyses based on ethnicity, research design, and miRNA profiling and found that multiple miRNA panels were more accurate in detecting ovarian cancer, with a combined DOR of 30.06 (95% CI: 8.58–105.37). Conclusion Per the meta-analysis, circulating miRNAs may be novel and non-invasive biomarkers for detecting ovarian cancer, particularly multiple miRNA panels, which have potential diagnostic value as screening tools in clinical practice. Electronic supplementary material The online version of this article (10.1186/s13048-019-0482-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xinshuai Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Dejiu Kong
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Chaokun Wang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xuezhen Ding
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Li Zhang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Mengqi Zhao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Jing Chen
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiangyun Xu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Xiaochen Hu
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Junqiang Yang
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China
| | - Shegan Gao
- Henan Key Laboratory of Cancer Epigenetics, Cancer Hospital, The First Affiliated Hospital, College of Clinical Medicine, Medical College of Henan University of Science and Technology, Luoyang, 471003, China.
| |
Collapse
|