1
|
Eity TA, Bhuia MS, Chowdhury R, Ahmmed S, Salehin Sheikh, Akter R, Islam MT. Therapeutic Efficacy of Quercetin and Its Nanoformulation Both the Mono- or Combination Therapies in the Management of Cancer: An Update with Molecular Mechanisms. J Trop Med 2024; 2024:5594462. [PMID: 39380577 PMCID: PMC11461079 DOI: 10.1155/2024/5594462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/12/2024] [Indexed: 10/10/2024] Open
Abstract
Quercetin, a major representative of the flavonol subclass found abundantly in almost all edible vegetables and fruits, showed remarkable therapeutic properties and was beneficial in numerous degenerative diseases by preventing lipid peroxidation. Quercetin is beneficial in different diseases, such as atherosclerosis and chronic inflammation. This study aims to find out the anticancer activities of quercetin and to determine different mechanisms and pathways which are responsible for the anticancer effect. It also revealed the biopharmaceutical, toxicological characteristics, and clinical utilization of quercetin to evaluate its suitability for further investigations as a reliable anticancer drug. All of the relevant data concerning this compound with cancer was collected using different scientific search engines, including PubMed, Springer Link, Wiley Online, Web of Science, SciFinder, ScienceDirect, and Google Scholar. This review demonstrated that quercetin showed strong anticancer properties, including apoptosis, inhibition of cell proliferation, autophagy, cell cycle arrest, inhibition of angiogenesis, and inhibition of invasion and migration against various types of cancer. Findings also revealed that quercetin could significantly moderate and regulate different pathways, including PI3K/AKT-mTORC1 pathway, JAK/STAT signaling system, MAPK signaling pathway, MMP signaling pathway, NF-κB pathway, and p-Camk2/p-DRP1 pathway. However, this study found that quercetin showed poor oral bioavailability due to reduced absorption; this limitation is overcome by applying nanotechnology (nanoformulation of quercetin). Moreover, different investigations revealed that quercetin expressed no toxic effect in the investigated subjects. Based on the view of these findings, it is demonstrated that quercetin might be considered a reliable chemotherapeutic drug candidate in the treatment of different cancers. However, more clinical studies are suggested to establish the proper therapeutic efficacy, safety, and human dose.
Collapse
Affiliation(s)
- Tanzila Akter Eity
- Department of Biotechnology and Genetic EngineeringBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
| | - Md. Shimul Bhuia
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Raihan Chowdhury
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Shakil Ahmmed
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of Biochemistry and Molecular BiologyBangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Salehin Sheikh
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
| | - Rima Akter
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Biotechnology and Genetic Engineering DisciplineKhulna University, Khulna 9208, Bangladesh
| | - Muhammad Torequl Islam
- Phytochemistry and Biodiversity Research LaboratoryBioLuster Research Center Ltd., Gopalganj, Gopalganj 8100, Bangladesh
- Department of PharmacyBangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Gopalganj 8100, Bangladesh
- Pharmacy DisciplineKhulna University, Khulna 9208, Bangladesh
| |
Collapse
|
2
|
Saed GM, Fletcher NM, Sharma H, Tullberg AS, Ittner E, Parris TZ, Pettersson D, Kovács A, Rönnerman EW, Dahm-Kähler P, Portela A, Garzone PD, Morris R, Helou K. Lemur tail kinase 3 serves as a predictor of patient outcomes and a target for the treatment of ovarian cancer. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200864. [PMID: 39290318 PMCID: PMC11406030 DOI: 10.1016/j.omton.2024.200864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 06/12/2024] [Accepted: 08/22/2024] [Indexed: 09/19/2024]
Abstract
Lemur tail kinase 3 (LMTK3) belongs to a family of tyrosine kinases that are known to correlate with tumor grade and patient survival in some cancers. Here, we validated LMTK3 as a specific target and a prognostic biomarker in ovarian cancer (OC). In samples from 204 stage I-II OC patients, immunohistochemical studies revealed a higher cytoplasmic-to-nuclear staining intensity of LMTK3, which correlated with worse overall survival (p < 0.001). Efficacy studies utilizing novel LMTK3 binding peptides (LMTK3BPs) showed that all chemosensitive and chemoresistant OC cells were killed without affecting normal cells (p < 0.005), with synergistic effects shown following cisplatin and docetaxel treatment. In an orthotopic xenograft mouse model of OC, we saw a 35% tumor reduction in response to intravenous injections of 2 mg/kg LMTK3BP given three times a week for 3 weeks. Furthermore, in vivo safety studies showed no signs of toxicity after LMTK3BP treatment, even at doses as high as 40 mg/kg. This study highlights LMTK3 as a predictor of patient clinical outcomes. More importantly, novel LMTK3BPs represent potential safe treatment options, either alone or in combination with therapies, for OC.
Collapse
Affiliation(s)
- Ghassan M Saed
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Nicole M Fletcher
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Harvey Sharma
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Axel Stenmark Tullberg
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ella Ittner
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Toshima Z Parris
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniella Pettersson
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Elisabeth Werner Rönnerman
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Pernilla Dahm-Kähler
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Portela
- Xenopat C/Feixa Llarga sn. Edifici Bioincubadora, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Robert Morris
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Gynecologic Oncology, Karmanos Cancer Institute, Detroit, MI, USA
| | - Khalil Helou
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Sahlgrenska Center for Cancer Research, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
3
|
The Inhibitory Properties of a Novel, Selective LMTK3 Kinase Inhibitor. Int J Mol Sci 2023; 24:ijms24010865. [PMID: 36614307 PMCID: PMC9821308 DOI: 10.3390/ijms24010865] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/23/2022] [Accepted: 12/02/2022] [Indexed: 01/05/2023] Open
Abstract
Recently, the oncogenic role of lemur tyrosine kinase 3 (LMTK3) has been well established in different tumor types, highlighting it as a viable therapeutic target. In the present study, using in vitro and cell-based assays coupled with biophysical analyses, we identify a highly selective small molecule LMTK3 inhibitor, namely C36. Biochemical/biophysical and cellular studies revealed that C36 displays a high in vitro selectivity profile and provides notable therapeutic effect when tested in the National Cancer Institute (NCI)-60 cancer cell line panel. We also report the binding affinity between LMTK3 and C36 as demonstrated via microscale thermophoresis (MST). In addition, C36 exhibits a mixed-type inhibition against LMTK3, consistent with the inhibitor overlapping with both the adenosine 5'-triphosphate (ATP)- and substrate-binding sites. Treatment of different breast cancer cell lines with C36 led to decreased proliferation and increased apoptosis, further reinforcing the prospective value of LMTK3 inhibitors for cancer therapy.
Collapse
|
4
|
Cai G, Sun W, Bi F, Wang D, Yang Q. Knockdown of LMTK3 in the Endometrioid Adenocarcinoma Cell Line Ishikawa: Inhibition of Growth and Estrogen Receptor α. Front Oncol 2021; 11:692282. [PMID: 34745935 PMCID: PMC8564183 DOI: 10.3389/fonc.2021.692282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/30/2021] [Indexed: 11/13/2022] Open
Abstract
Objective The curative effect of high-efficiency progesterone and other therapeutic drugs for endometrioid adenocarcinoma patients with preservation of reproductive capacity has not been satisfactory so far. Novel therapeutic drugs need to be explored. Methods We investigated the cytoplastic and nuclear expression levels of LMTK3 between endometrioid adenocarcinoma tissues and adjacent endometrial tissues by immunohistochemistry. We detected the effects of LMTK3 on cell viability of Ishikawa cells by CCK-8. We detected the effects of LMTK3 on cell cycle and apoptosis of Ishikawa cells by flow cytometry. We also detected the effects of LMTK3 knockdown on mRNA and protein levels of ERα by qRT-PCR and western blotting, respectively. We also used the cBioPortal online database to analyze the coexpression of LMTK3 and ESR1 in 1647 UCEC samples. Results We used TMAs to identify that LMTK3 was mainly detected in the cytoplasm of endometrioid tissues, and cytoplasmic LMTK3 expression in endometrioid tissues was higher than that in adjacent endometrial tissues (P < 0.05). LMTK3 knockdown decreased the proliferation of Ishikawa cells through decreasing cell viability (P < 0.01), increasing G1 (P < 0.001) arrest, and promoting apoptosis (P < 0.01). There was a positive correlation between the mRNA expression levels of LMTK3 and ESR1 (Spearman: P=2.011e-5, R=0.13; Pearson: P=7.18e-8, R=0.17). Knockdown of LMTK3 also reduced the mRNA (P < 0.001) and protein (P < 0.001) levels of ERα. Conclusions Inhibitors of LMTK3 may be a possible future treatment for ERα and LMTK3 highly expressed endometrioid adenocarcinoma following appropriate studies.
Collapse
Affiliation(s)
- Guiyang Cai
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Sun
- Department of Key Laboratory of Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, China Medical University, Shenyang, China
| | - Fangfang Bi
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Dandan Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Qing Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Wang C, Yang M, Gu X, Gu Y. Lemur tyrosine kinase-3 (LMTK3) induces chemoresistance to cetuximab in colorectal cancer via the ERK/MAPK pathway. Bioengineered 2021; 12:6594-6605. [PMID: 34516351 PMCID: PMC8806509 DOI: 10.1080/21655979.2021.1974655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
As an oncogenic kinase in multiple cancers, LMTK3 was deeply implicated in cancer pathogenesis. Nevertheless, its biological function in colorectal cancer (CRC) is still unclear. In this study, LMTK3 mRNA expression was assessed by RT-qPCR. LMTK3, phospho-ERK1/2 (p-ERK1/2), ERK1/2, and cleaved caspase-3 protein levels were detected by western blotting. Cetuximab (CTX)-resistant CRC cell models were constructed to investigate the mechanism of LMTK3-regulated CTX resistance in CRC. CTX half-maximal inhibitory concentration (IC50), viability, apoptosis, cell cycle, migration, and invasion of CRC cells were analyzed via Cell Counting Kit-8 (CCK-8), flow cytometry, wound healing, and transwell assays. We found LMTK3 was distinctly upregulated in CRC tissues and cells, particularly in CTX-resistant CRC tissues and cells. LMTK3 inhibition lowered CTX half-maximal inhibitory concentration (IC50) value, inhibited cell viability, induced cell apoptosis, triggered cell-cycle arrest, and impaired cell metastatic capability in CTX-resistant CRC cells. Moreover, we also demonstrated that LMTK3 induced CTX resistance in CRC via the activation of ERK/MAPK signaling in vitro. These results suggested a novel molecular mechanism by which LMTK3 participates in the development of CTX resistance in CRC.
Collapse
Affiliation(s)
- Cheng Wang
- Endoscopy and Laparoscopy Center, Changzhou No.3 People's Hospital, Changzhou, Jiangsu, China
| | - Miaomiao Yang
- Endoscopy and Laparoscopy Center, Changzhou No.3 People's Hospital, Changzhou, Jiangsu, China
| | - Xi Gu
- Endoscopy and Laparoscopy Center, Changzhou No.3 People's Hospital, Changzhou, Jiangsu, China
| | - Yanjing Gu
- Endoscopy and Laparoscopy Center, Changzhou No.3 People's Hospital, Changzhou, Jiangsu, China
| |
Collapse
|
6
|
Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021; 11:210218. [PMID: 34582708 PMCID: PMC8478525 DOI: 10.1098/rsob.210218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
In the last decade, LMTK3 (lemur tyrosine kinase 3) has emerged as an important player in breast cancer, contributing to the advancement of disease and the acquisition of resistance to therapy through a strikingly complex set of mechanisms. Although the knowledge of its physiological function is largely limited to receptor trafficking in neurons, there is mounting evidence that LMTK3 promotes oncogenesis in a wide variety of cancers. Recent studies have broadened our understanding of LMTK3 and demonstrated its importance in numerous signalling pathways, culminating in the identification of a potent and selective LMTK3 inhibitor. Here, we review the roles of LMTK3 in health and disease and discuss how this research may be used to develop novel therapeutics to advance cancer treatment.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Medicine, University of Udine, Piazzale Kolbe 4, Udine 33100, Italy
| | - Mark Samuels
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| | - Christos Tolias
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK,Department of Neurosurgery, Royal Sussex County Hospital, Brighton and Sussex University Hospitals (BSUH) NHS Trust, Millennium Building, Brighton BN2 5BE, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, JMS Building, Falmer, Brighton BN1 9QG, UK
| |
Collapse
|
7
|
Ditsiou A, Cilibrasi C, Simigdala N, Papakyriakou A, Milton-Harris L, Vella V, Nettleship JE, Lo JH, Soni S, Smbatyan G, Ntavelou P, Gagliano T, Iachini MC, Khurshid S, Simon T, Zhou L, Hassell-Hart S, Carter P, Pearl LH, Owen RL, Owens RJ, Roe SM, Chayen NE, Lenz HJ, Spencer J, Prodromou C, Klinakis A, Stebbing J, Giamas G. The structure-function relationship of oncogenic LMTK3. SCIENCE ADVANCES 2020; 6:6/46/eabc3099. [PMID: 33188023 PMCID: PMC7673765 DOI: 10.1126/sciadv.abc3099] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/30/2020] [Indexed: 05/10/2023]
Abstract
Elucidating signaling driven by lemur tyrosine kinase 3 (LMTK3) could help drug development. Here, we solve the crystal structure of LMTK3 kinase domain to 2.1Å resolution, determine its consensus motif and phosphoproteome, unveiling in vitro and in vivo LMTK3 substrates. Via high-throughput homogeneous time-resolved fluorescence screen coupled with biochemical, cellular, and biophysical assays, we identify a potent LMTK3 small-molecule inhibitor (C28). Functional and mechanistic studies reveal LMTK3 is a heat shock protein 90 (HSP90) client protein, requiring HSP90 for folding and stability, while C28 promotes proteasome-mediated degradation of LMTK3. Pharmacologic inhibition of LMTK3 decreases proliferation of cancer cell lines in the NCI-60 panel, with a concomitant increase in apoptosis in breast cancer cells, recapitulating effects of LMTK3 gene silencing. Furthermore, LMTK3 inhibition reduces growth of xenograft and transgenic breast cancer mouse models without displaying systemic toxicity at effective doses. Our data reinforce LMTK3 as a druggable target for cancer therapy.
Collapse
Affiliation(s)
- Angeliki Ditsiou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Chiara Cilibrasi
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Nikiana Simigdala
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Athanasios Papakyriakou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos," 15341 Athens, Greece
| | - Leanne Milton-Harris
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Joanne E Nettleship
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics Headington, Oxford OX3 7BN, UK
- Protein Production UK, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
| | - Jae Ho Lo
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shivani Soni
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Goar Smbatyan
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Panagiota Ntavelou
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Teresa Gagliano
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Maria Chiara Iachini
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Sahir Khurshid
- Faculty of Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Thomas Simon
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Lihong Zhou
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Philip Carter
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London W12 0NN, UK
| | - Laurence H Pearl
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Robin L Owen
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
| | - Raymond J Owens
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics Headington, Oxford OX3 7BN, UK
- Protein Production UK, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot OX11 0FA, UK
- The Rosalind Franklin Institute, Harwell Campus, Didcot OX11 0FA, UK
| | - S Mark Roe
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Science Park Road, Falmer, Brighton BN1 9RQ, UK
| | - Naomi E Chayen
- Faculty of Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, Sir Alexander Fleming Building, South Kensington Campus, London SW7 2AZ, UK
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QJ, UK
| | - Chrisostomos Prodromou
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK
| | - Apostolos Klinakis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Justin Stebbing
- Faculty of Medicine, Department of Surgery and Cancer, Imperial College, London W12 0NN, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
| |
Collapse
|
8
|
Jiang T, Lu X, Yang F, Wang M, Yang H, Xing N. LMTK3 promotes tumorigenesis in bladder cancer via the ERK/MAPK pathway. FEBS Open Bio 2020; 10:2107-2121. [PMID: 32865871 PMCID: PMC7530379 DOI: 10.1002/2211-5463.12964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/20/2020] [Accepted: 07/30/2020] [Indexed: 12/21/2022] Open
Abstract
Lemur tyrosine kinase 3 (LMTK3) is a key member of the serine–threonine tyrosine kinase family. It plays an important role in breast cancer tumorigenesis and progression. However, its biological role in bladder cancer remains elusive. In this study, we demonstrated that LMTK3 was overexpressed in bladder cancer and was positively correlated with bladder cancer malignancy. High LMTK3 expression predicted poor overall survival. Knockdown of LMTK3 in bladder cancer cells triggered cell‐cycle arrest at G2/M phase, suppressed cell growth, and induced cell apoptosis in bladder cancer cells. Furthermore, Transwell assays revealed that reduction of LMTK3 decreased cell migration by regulating the epithelial‐to‐mesenchymal transition pathway. Conversely, LKTM3 overexpression was shown to promote proliferation and migration of bladder cancer cells. We assessed phosphorylation of MEK and ERK1/2 in bladder cancer cells depleted of LMTK3 and demonstrated a reduced phosphorylation status compared with the control group. Using an MAPK signaling‐specific inhibitor, U0126, we could rescue the promotion of proliferation and viability in LMTK3‐overexpressing cells. In conclusion, we extend the status of LMTK3 as an oncogene in bladder cancer and provide evidence for its function via the activation of the ERK/MAPK pathway. Thus, targeting LMTK3 may hold potential as a diagnostic and prognostic biomarker and as a possible future treatment for bladder cancer.
Collapse
Affiliation(s)
- Tao Jiang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.,Department of Urology, Affiliated Dalian Friendship Hospital of Dalian Medical University, China
| | - Xinxing Lu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Feiya Yang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingshuai Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Hua Yang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
9
|
Ortiz MA, Michaels H, Molina B, Toenjes S, Davis J, Marconi GD, Hecht D, Gustafson JL, Piedrafita FJ, Nefzi A. Discovery of cyclic guanidine-linked sulfonamides as inhibitors of LMTK3 kinase. Bioorg Med Chem Lett 2020; 30:127108. [PMID: 32192797 DOI: 10.1016/j.bmcl.2020.127108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/09/2020] [Accepted: 03/10/2020] [Indexed: 12/19/2022]
Abstract
Lemur tyrosine kinase 3 (LMTK3) is oncogenic in various cancers. In breast cancer, LMTK3 phosphorylates and modulates the activity of estrogen receptor-α (ERα) and is essential for the growth of ER-positive cells. LMTK3 is highly expressed in ER-negative breast cancer cells, where it promotes invasion via integrin β1. LMTK3 abundance and/or high nuclear expression have been linked to shorter disease free and overall survival time in a variety of cancers, supporting LMTK3 as a potential target for anticancer drug development. We sought to identify small molecule inhibitors of LMTK3 with the ultimate goal to pharmacologically validate this kinase as a novel target in cancer. We used a homogeneous time resolve fluorescence (HTRF) assay to screen a collection of mixture-based combinatorial chemical libraries containing over 18 million compounds. We identified several cyclic guanidine-linked sulfonamides with sub-micromolar activity and evaluated their binding mode using a 3D homology model of the LMTK3 KD.
Collapse
Affiliation(s)
- Maria A Ortiz
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States
| | - Heather Michaels
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States
| | - Brandon Molina
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States
| | - Sean Toenjes
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, CA, United States
| | - Jennifer Davis
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States
| | - Guya Diletta Marconi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio, Cheti-Pescara, Via dei vestini, 31, Italy
| | - David Hecht
- Southwestern College, Department of Chemistry, Chula Vista, CA, United States
| | - Jeffrey L Gustafson
- San Diego State University, Department of Chemistry and Biochemistry, San Diego, CA, United States
| | - F Javier Piedrafita
- Donald P. Shiley BioScience Center, San Diego State University, San Diego, CA, United States.
| | - Adel Nefzi
- Torrey Pines Institute for Molecular Studies, Port Saint Lucie, FL, United States; Florida International University, Miami, FL, United States.
| |
Collapse
|
10
|
Rani A, Stebbing J, Giamas G, Murphy J. Endocrine Resistance in Hormone Receptor Positive Breast Cancer-From Mechanism to Therapy. Front Endocrinol (Lausanne) 2019; 10:245. [PMID: 31178825 PMCID: PMC6543000 DOI: 10.3389/fendo.2019.00245] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
The importance and role of the estrogen receptor (ER) pathway has been well-documented in both breast cancer (BC) development and progression. The treatment of choice in women with metastatic breast cancer (MBC) is classically divided into a variety of endocrine therapies, 3 of the most common being: selective estrogen receptor modulators (SERM), aromatase inhibitors (AI) and selective estrogen receptor down-regulators (SERD). In a proportion of patients, resistance develops to endocrine therapy due to a sophisticated and at times redundant interference, at the molecular level between the ER and growth factor. The progression to endocrine resistance is considered to be a gradual, step-wise process. Several mechanisms have been proposed but thus far none of them can be defined as the complete explanation behind the phenomenon of endocrine resistance. Although multiple cellular, molecular and immune mechanisms have been and are being extensively studied, their individual roles are often poorly understood. In this review, we summarize current progress in our understanding of ER biology and the molecular mechanisms that predispose and determine endocrine resistance in breast cancer patients.
Collapse
Affiliation(s)
- Aradhana Rani
- School of Life Sciences, University of Westminster, London, United Kingdom
- *Correspondence: Aradhana Rani
| | - Justin Stebbing
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - John Murphy
- School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|