1
|
Hayashi T, Kishi M, Takamochi K, Hosoya M, Kohsaka S, Kishikawa S, Ura A, Sano K, Sasahara N, Suehara Y, Takahashi F, Saito T, Suzuki K, Yao T. Expression of paired box 9 defines an aggressive subset of lung adenocarcinoma preferentially occurring in smokers. Histopathology 2023; 82:672-683. [PMID: 36527228 DOI: 10.1111/his.14853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
AIMS A distinct subset of lung adenocarcinomas (LADs), arising from a series of peripheral lung cells defined as the terminal respiratory unit (TRU), is characterised by thyroid transcription factor 1 (TTF-1) expression. The clinical relevance of transcription factors (TFs) other than TTF-1 remains unknown in LAD and was explored in the present study. METHODS AND RESULTS Seventy-one LAD samples were subjected to high-throughput transcriptome screening of LAD using cap analysis gene expression (CAGE) sequencing data; CAGE provides genome-wide expression levels of the transcription start sites (TSSs). In total, 1083 invasive LAD samples were subjected to immunohistochemical examination for paired box 9 (PAX9) and TTF-1 expression levels. PAX9 is an endoderm development-associated TF that most strongly and inversely correlates with the expression of TTF-1 TSS subsets. Immunohistochemically, PAX9 expression was restricted to the nuclei of ciliated epithelial and basal cells in the bronchi and bronchioles and the nuclei of epithelial cells of the bronchial glands; moreover, PAX9 expression was observed in 304 LADs (28%). PAX9-positive LADs were significantly associated with heavy smoking, non-lepidic subtype, EGFR wild-type tumours and PD-L1 expression (all P < 0.0001). All these characteristics were opposite to those of TRU-type LADs with TTF-1 expression. PAX9 expression was an independent prognostic factor for decreased overall survival (P = 0.022). CONCLUSIONS Our results revealed that PAX9 expression defines an aggressive subset of LADs preferentially occurring in smokers that may arise from bronchial or bronchiolar cells.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Monami Kishi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kazuya Takamochi
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Masaki Hosoya
- Department of Medical Oncology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Shinji Kohsaka
- Division of Cellular Signaling, National Cancer Center Research Institute, Chuo-ku, Tokyo
| | - Satsuki Kishikawa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Ayako Ura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kei Sano
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo.,Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Noriko Sasahara
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Yoshiyuki Suehara
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Fumiyuki Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tsuyoshi Saito
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Kenji Suzuki
- Department of General Thoracic Surgery, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | - Takashi Yao
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo
| | | |
Collapse
|
2
|
Cheng J, Ma H, Yan M, Zhang Z, Xing W. Circ_0007624 suppresses the development of esophageal squamous cell carcinoma via targeting miR-224-5p/CPEB3 to inactivate the EGFR/PI3K/AKT signaling. Cell Signal 2022; 99:110448. [PMID: 35998761 DOI: 10.1016/j.cellsig.2022.110448] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/03/2022]
Abstract
Circular RNAs (circRNAs) have been confirmed to be involved in the regulation of esophageal squamous cell carcinoma (ESCC) progression. According to GEO datasets (GSE112496 and GSE150476), we identified that circ_0007624 was abnormally down-regulated in ESCC. However, there is still no reports regarding the function and mechanism of circ_0007624 in ESCC development. Here, we found that circ_0007624 was significantly underexpressed in ESCC tissues, and low expression of circ_0007624 was indicative of a poor prognosis. Overexpressing circ_0007624 or silencing miR-224-5p suppressed cell proliferation, metastasis, epithelial-mesenchymal transition (EMT), and promoted apoptosis in vitro. Also, circ_0007624 up-regulation slowed ESCC tumor growth in vivo. Mechanistically, circ_0007624 could serve as a competing endogenous RNA (ceRNA) by sponging miR-224-5p to antagonize its inhibitory effect on the target cytoplasmic polyadenylation element binding protein 3 (CPEB3). Rescue experiments showed that the anti-cancer properity role of circ_0007624 in ESCC is partly reversed by the restoration of miR-224-5p or down-regulation of CPEB3. Furthermore, EGFR/PI3K/AKT pathway was involved in the regulation of circ_0007624/miR-224-5p/CPEB3 axis in ESCC. Together, our findings demonstrate for the first time that circ_0007624/miR-224-5p/CPEB3 suppresses ESCC progression by inactivating EGFR/PI3K/AKT signaling, providing a basis for developing circ_0007624-targeted therapies for ESCC patients.
Collapse
Affiliation(s)
- Jiwei Cheng
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Haibo Ma
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Ming Yan
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China
| | - Zhen Zhang
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China.; Department of Anesthesiology, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China..
| | - Wenqun Xing
- Department of Thoracic Surgery, the Affiliated Cancer Hospital of Zhengzhou University, Henan Cancer Hospital, Zhengzhou 450008, China..
| |
Collapse
|
3
|
Liu J, Zhou R, Deng M, Xue N, Li T, Guo Y, Gao L, Fan R, Zhao D. RETRACTED ARTICLE: Long non-coding RNA DIO3OS binds to microRNA-130b to restore radiosensitivity in esophageal squamous cell carcinoma by upregulating PAX9. Cancer Gene Ther 2022; 29:870. [PMID: 34183777 DOI: 10.1038/s41417-021-00344-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 04/29/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Junqi Liu
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Runze Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Ming Deng
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, P.R. China
| | - Nannan Xue
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Tingxuan Li
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yuexin Guo
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Liang Gao
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Ruitai Fan
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.
| | - Di Zhao
- Department of Endocrinology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China.
| |
Collapse
|
4
|
Chen X, Li Y, Paiboonrungruang C, Li Y, Peters H, Kist R, Xiong Z. PAX9 in Cancer Development. Int J Mol Sci 2022; 23:5589. [PMID: 35628401 PMCID: PMC9147292 DOI: 10.3390/ijms23105589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/05/2023] Open
Abstract
Paired box 9 (PAX9) is a transcription factor of the PAX family functioning as both a transcriptional activator and repressor. Its functional roles in the embryonic development of various tissues and organs have been well studied. However, its roles and molecular mechanisms in cancer development are largely unknown. Here, we review the current understanding of PAX9 expression, upstream regulation of PAX9, and PAX9 downstream events in cancer development. Promoter hypermethylation, promoter SNP, microRNA, and inhibition of upstream pathways (e.g., NOTCH) result in PAX9 silencing or downregulation, whereas gene amplification and an epigenetic axis upregulate PAX9 expression. PAX9 may contribute to carcinogenesis through dysregulation of its transcriptional targets and related molecular pathways. In summary, extensive studies on PAX9 in its cellular and tissue contexts are warranted in various cancers, in particular, HNSCC, ESCC, lung cancer, and cervical SCC.
Collapse
Affiliation(s)
- Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yahui Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Chorlada Paiboonrungruang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| | - Yong Li
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
- Department of Thoracic Surgery, National Cancer Center, Cancer Hospital of Chinese Academy of Medical Sciences, 17 Panjiayuan Nanli Road, Beijing 100021, China
| | - Heiko Peters
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
| | - Ralf Kist
- Newcastle University Biosciences Institute, Newcastle upon Tyne NE2 4BW, UK;
- School of Dental Sciences, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4BW, UK
| | - Zhaohui Xiong
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA; (X.C.); (Y.L.); (C.P.); (Y.L.)
| |
Collapse
|
5
|
Bhol CS, Mishra SR, Patil S, Sahu SK, Kirtana R, Manna S, Shanmugam MK, Sethi G, Patra SK, Bhutia SK. PAX9 reactivation by inhibiting DNA methyltransferase triggers antitumor effect in oral squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166428. [PMID: 35533906 DOI: 10.1016/j.bbadis.2022.166428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/11/2022] [Accepted: 04/29/2022] [Indexed: 01/07/2023]
Abstract
Aberrant DNA hypermethylation is associated with oral carcinogenesis. Procaine, a local anesthetic, is a DNA methyltransferase (DNMT) inhibitor that activates anticancer mechanisms. However, its effect on silenced tumor suppressor gene (TSG) activation and its biological role in oral squamous cell carcinoma (OSCC) remain unknown. Here, we report procaine inhibited DNA methylation by suppressing DNMT activity and increased the expression of PAX9, a differentiation gene in OSCC cells. Interestingly, the reactivation of PAX9 by procaine found to inhibit cell growth and trigger apoptosis in OSCC in vitro and in vivo. Likely, the enhanced PAX9 expression after exposure to procaine controls stemness and differentiation through the autophagy-dependent pathway in OSCC cells. PAX9 inhibition abrogated procaine-induced apoptosis, autophagy, and inhibition of stemness. In OSCC cells, procaine improved anticancer drug sensitivity through PAX9, and its deficiency significantly blunted the anticancer drug sensitivity mediated by procaine. Additionally, NRF2 activation by procaine facilitated the antitumor response of PAX9, and pharmacological inhibition of NRF2 by ML385 reduced death and prevented the decrease in the orosphere-forming potential of OSCC cells. Furthermore, procaine promoted antitumor activity in FaDu xenografts in athymic nude mice, and immunohistochemistry data showed that PAX9 expression was significantly enhanced in the procaine group compared to the vehicle control. In conclusion, PAX9 reactivation in response to DNMT inhibition could trigger a potent antitumor mechanism to provide a new therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumya Ranjan Mishra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Sunil Kumar Sahu
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - R Kirtana
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Sundergarh 769008, Odisha, India.
| |
Collapse
|
6
|
Pawar A, Chowdhury OR, Chauhan R, Talole S, Bhattacharjee A. Identification of key gene signatures for the overall survival of ovarian cancer. J Ovarian Res 2022; 15:12. [PMID: 35057823 PMCID: PMC8780391 DOI: 10.1186/s13048-022-00942-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 12/31/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The five-year overall survival (OS) of advanced-stage ovarian cancer remains nearly 25-35%, although several treatment strategies have evolved to get better outcomes. A considerable amount of heterogeneity and complexity has been seen in ovarian cancer. This study aimed to establish gene signatures that can be used in better prognosis through risk prediction outcome for the survival of ovarian cancer patients. Different studies' heterogeneity into a single platform is presented to explore the penetrating genes for poor or better survival. The integrative analysis of multiple data sets was done to determine the genes that influence poor or better survival. A total of 6 independent data sets was considered. The Cox Proportional Hazard model was used to obtain significant genes that had an impact on ovarian cancer patients. The gene signatures were prepared by splitting the over-expressed and under-expressed genes parallelly by the variable selection technique. The data visualisation techniques were prepared to predict the overall survival, and it could support the therapeutic regime. RESULTS We preferred to select 20 genes in each data set as upregulated and downregulated. Irrespective of the selection of multiple genes, not even a single gene was found common among data sets for the survival of ovarian cancer patients. However, the same analytical approach adopted. The chord plot was presented to make a comprehensive understanding of the outcome. CONCLUSIONS This study helps us to understand the results obtained from different studies. It shows the impact of the heterogeneity from one study to another. It shows the requirement of integrated studies to make a holistic view of the gene signature for ovarian cancer survival.
Collapse
Affiliation(s)
- Akash Pawar
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Oindrila Roy Chowdhury
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Ruby Chauhan
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
| | - Sanjay Talole
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Atanu Bhattacharjee
- Section of Biostatistics, Center for Cancer Epidemiology, Tata Memorial Centre, Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
| |
Collapse
|
7
|
Liu J, Wang YQ, Niu HB, Zhang CX. PAX9 functions as a tumor suppressor gene for cervical cancer via modulating cell proliferation and apoptosis. Kaohsiung J Med Sci 2021; 38:357-366. [PMID: 34931758 DOI: 10.1002/kjm2.12489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/27/2021] [Accepted: 11/16/2021] [Indexed: 01/16/2023] Open
Abstract
To investigate the effect of PAX9 on the progression of cervical cancer (CC). PAX9 expression was quantified in CC tissues and adjacent normal tissues, as well as human CC cell lines and human cervical epithelial cells (HCerEpiC). PAX9-overexpression lentiviral vectors were transfected into CC cell lines, followed by the measurement of proliferation and apoptosis and the quantification of apoptosis-related proteins. In vivo, mice were subcutaneously injected with CaSki cells transfected with PAX9-overexpression lentiviral vectors and control vectors. Then, the volume and weight of tumors were measured followed by hematoxylin and eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, and immunohistochemistry. PAX9 expression in the CC tissues was lower than that in the adjacent normal tissues, which was correlated with the FIGO stage, tumor size, infiltration depth, parametrium invasion, lympho-vascular space invasion tumor-positive lymph nodes, and prognosis. Furthermore, PAX9 in CC cell lines was also lower than in HCerEpiC. PAX9 inhibits the CC cell proliferation and promotes the apoptosis, with the up-regulations of caspase-3, poly(ADP-ribose) polymerase (PARP), and Bax and the down-regulation of Bcl-2. In vivo experiments demonstrated that in the PAX9 group, the tumor weight and volume were lower than those in the vector group accompanying the decreased Ki-67, cleaved-caspase-3, and Bax expressions and the increased TUNEL and Bcl-2 expression. PAX9 was lowly expressed in the CC tissues and associated with the clinicopathological characteristics and prognosis. PAX9 could inhibit proliferation of CC cell lines and promote the apoptosis, thus suppressing the tumor growth in vivo, indicating its potential therapeutic role for CC treatment.
Collapse
Affiliation(s)
- Jie Liu
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| | - Ya-Qi Wang
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| | - Hai-Bo Niu
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| | - Chun-Xiao Zhang
- Department of Gynecology, Yantaishan Hospital, Yantai, China
| |
Collapse
|
8
|
Soto JA, Rodríguez-Antolín C, Vera O, Pernía O, Esteban-Rodríguez I, Dolores Diestro M, Benitez J, Sánchez-Cabo F, Alvarez R, De Castro J, Ibanez de Cáceres I. Transcriptional epigenetic regulation of Fkbp1/Pax9 genes is associated with impaired sensitivity to platinum treatment in ovarian cancer. Clin Epigenetics 2021; 13:167. [PMID: 34454589 PMCID: PMC8401184 DOI: 10.1186/s13148-021-01149-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 08/09/2021] [Indexed: 12/31/2022] Open
Abstract
Background In an effort to contribute to overcoming the platinum resistance exhibited by most solid tumors, we performed an array of epigenetic approaches, integrating next-generation methodologies and public clinical data to identify new potential epi-biomarkers in ovarian cancer, which is considered the most devastating of gynecological malignancies.
Methods We cross-analyzed data from methylome assessments and restoration of gene expression through microarray expression in a panel of four paired cisplatin-sensitive/cisplatin-resistant ovarian cancer cell lines, along with publicly available clinical data from selected individuals representing the state of chemoresistance. We validated the methylation state and expression levels of candidate genes in each cellular phenotype through Sanger sequencing and reverse transcription polymerase chain reaction, respectively. We tested the biological role of selected targets using an ectopic expression plasmid assay in the sensitive/resistant tumor cell lines, assessing the cell viability in the transfected groups. Epigenetic features were also assessed in 189 primary samples obtained from ovarian tumors and controls. Results We identified PAX9 and FKBP1B as potential candidate genes, which exhibited epigenetic patterns of expression regulation in the experimental approach. Re-establishment of FKBP1B expression in the resistant OVCAR3 phenotype in which this gene is hypermethylated and inhibited allowed it to achieve a degree of platinum sensitivity similar to the sensitive phenotype. The evaluation of these genes at a translational level revealed that PAX9 hypermethylation leads to a poorer prognosis in terms of overall survival. We also set a precedent for establishing a common epigenetic signature in which the validation of a single candidate, MEST, proved the accuracy of our computational pipelines. Conclusions Epigenetic regulation of PAX9 and FKBP1B genes shows that methylation in non-promoter areas has the potential to control gene expression and thus biological consequences, such as the loss of platinum sensitivity. At the translational level, PAX9 behaves as a predictor of chemotherapy response to platinum in patients with ovarian cancer. This study revealed the importance of the transcript-specific study of each gene under potential epigenetic regulation, which would favor the identification of new markers capable of predicting each patient’s progression and therapeutic response. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01149-8.
Collapse
Affiliation(s)
- Javier Andrés Soto
- Universidad de Santander, School of Medical and Health Sciences, Masira Research Institute, Bucaramanga, Colombia. .,Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| | - Carlos Rodríguez-Antolín
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.,Biomarkers and Experimental Therapeutics in Cancer, Calle de Pedro Rico, 6, 28029, IdiPAZMadrid, Spain
| | - Olga Vera
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.,Biomarkers and Experimental Therapeutics in Cancer, Calle de Pedro Rico, 6, 28029, IdiPAZMadrid, Spain
| | - Olga Pernía
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.,Biomarkers and Experimental Therapeutics in Cancer, Calle de Pedro Rico, 6, 28029, IdiPAZMadrid, Spain
| | - Isabel Esteban-Rodríguez
- Biomarkers and Experimental Therapeutics in Cancer, Calle de Pedro Rico, 6, 28029, IdiPAZMadrid, Spain.,Department of Pathology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Maria Dolores Diestro
- Gynecologic Oncology Unit, La Paz University Hospital-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Javier Benitez
- Human Genetics Group, Spanish National Cancer Research Center (CNIO), Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain.,Spanish Network On Rare Diseases (CIBERER), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, 28029, Madrid, Spain
| | - Fátima Sánchez-Cabo
- Spanish National Center for Cardiovascular Research Center (CNIC), Calle de Melchor Fernández Almagro, 3, 28029, Madrid, Spain
| | - Rafael Alvarez
- Hospital Universitario HM Sanchinarro, Calle de Oña, 10, 28050, Sanchinarro, Madrid, Spain
| | - Javier De Castro
- Biomarkers and Experimental Therapeutics in Cancer, Calle de Pedro Rico, 6, 28029, IdiPAZMadrid, Spain
| | - Inmaculada Ibanez de Cáceres
- Cancer Epigenetics Laboratory, INGEMM, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain. .,Biomarkers and Experimental Therapeutics in Cancer, Calle de Pedro Rico, 6, 28029, IdiPAZMadrid, Spain.
| |
Collapse
|
9
|
Bhol CS, Patil S, Sahu BB, Patra SK, Bhutia SK. The clinical significance and correlative signaling pathways of paired box gene 9 in development and carcinogenesis. Biochim Biophys Acta Rev Cancer 2021; 1876:188561. [PMID: 33965511 DOI: 10.1016/j.bbcan.2021.188561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022]
Abstract
Paired box 9 (PAX9) gene belongs to the PAX family, which encodes a family of metazoan transcription factors documented by a conserved DNA binding paired domain 128-amino-acids, critically essential for physiology and development. It is primarily expressed in embryonic tissues, such as the pharyngeal pouch endoderm, somites, neural crest-derived mesenchyme, and distal limb buds. PAX9 plays a vital role in craniofacial development by maintaining the odontogenic potential, mutations, and polymorphisms associated with the risk of tooth agenesis, hypodontia, and crown size in dentition. The loss-of-function of PAX9 in the murine model resulted in a short life span due to the arrest of cleft palate formation and skeletal abnormalities. According to recent studies, the PAX9 gene has a significant role in maintaining squamous cell differentiation, odontoblast differentiation of pluripotent stem cells, deregulation of which is associated with tumor initiation, and malignant transformation. Moreover, PAX9 contributes to promoter hypermethylation and alcohol- induced oro-esophageal squamous cell carcinoma mediated by downregulation of differentiation and apoptosis. Likewise, PAX9 activation is also reported to be associated with drug sensitivity. In summary, this current review aims to understand PAX9 function in the regulation of development, differentiation, and carcinogenesis, along with the underlying signaling pathways for possible cancer therapeutics.
Collapse
Affiliation(s)
- Chandra Sekhar Bhol
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Binod Bihari Sahu
- Plant Immunity Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
10
|
Chatterjee K, De S, Roy SD, Sahu SK, Chakraborty A, Ghatak S, Das N, Mal S, Chattopadhyay NR, Das P, Reddy RR, Mukherjee S, Das AK, Puii Z, Zomawia E, Singh YI, Tsering S, Riba K, Rajasubramaniam S, Suryawanshi AR, Choudhuri T. BAX -248 G>A and BCL2 -938 C>A Variant Lowers the Survival in Patients with Nasopharyngeal Carcinoma and Could be Associated with Tissue-Specific Malignancies: A Multi-Method Approach. Asian Pac J Cancer Prev 2021; 22:1171-1181. [PMID: 33906310 PMCID: PMC8325122 DOI: 10.31557/apjcp.2021.22.4.1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 04/09/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The association of BAX -248 G>A and BCL2 -938 C>A with different cancers created conflicts. We studied the correlation and the effect of these polymorphisms in patients with Nasopharyngeal Carcinoma (NPC). Methods: PCR-RFLP and Sanger sequencing were used to detect polymorphisms. Statistical analysis including forest plot and Kaplan-Meier Log-rank test was conducted to investigate the association and effect of these SNPs on the NPC patients' survival. The computational study was performed to investigate the possible regulatory role between these polymorphisms and the poor survival of NPC patients. Meta-analysis was executed to check the tissue-specific association of these polymorphisms in the context of global cancer prognosis. RESULTS We observed an increased and significant association of BAX -248 G>A [GA:OR=5.29, 95%CI=1.67,16.67, P=0.004; GA+AA:OR=5.71, 95%CI=1.82,17.90, P =0.002; A:OR=5.33, 95%CI=1.76,16.13, P=0.003], and BCL2 -938 C>A [CA:OR=2.26, 95%CI=1.03,4.96, P=0.04; AA:OR=3.56, 95%CI=0.97,13.05, P=0.05; CA+AA:OR=3.10, 95%CI=1.51,6.35, P=0.002; A:OR=2.90, 95% CI=1.59,5.29, P=0.0005] with the risk of NPC. Also, these SNPs were strongly correlated with poor survival in NPC patients (lower estimated survival mean, lower estimated proportion surviving at 5 years with p <0.05). The computational study showed that these SNPs altered the binding affinity of transcription factors HIF1, SP1, PAX3, PAX9 and CREB towards promoter (Lower p indicates strong affinity). The meta-analysis revealed the tissue-specific association of these polymorphisms. BAX -248 G>A showed a significant correlation with carcinomas [A vs G:OR=1.60, 95%CI=1.09,2.34, P=0.01; AA vs GG:OR=2.61, 95%CI=1.68,4.06, p <0.001; AA+GA vs GG:OR=1.53,95%CI=1.04,2.25, P=0.02); AA vs GG+GA:OR=2.53, 95%CI=1.65,3.87, p <0.001], and BCL2 -938 C>A with other malignancies [A vs C:OR=1.45, 95%CI=1.26,1.66, p <0.001; AA vs CC:OR=2.07, 95%CI: 1.15,3.72, P=0.01; AA+CA vs CC:OR=1.42, 95%CI=1.18,1.72, p <0.001; AA vs CC+CA:OR=1.89, 95%CI=1.02,3.50, P=0.04]. CONCLUSIONS BAX -248 G>A and BCL2 -938 C>A was associated with poor survival in NPC patients. It may increase cancer susceptibility through transcriptional regulation. Moreover, these SNPs' effects could be tissue-specific. .
Collapse
Affiliation(s)
- Koustav Chatterjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Saikat De
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Sankar Deb Roy
- Department of Radiation Oncology, Eden Medical Centre, Dimapur, Nagaland, India.
| | - Sushil Kumar Sahu
- Department of Pharmacology and Molecular Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland, United States.
| | | | - Sandeep Ghatak
- Division of Animal and Fishery Science, ICAR Research Complex for North East Hill Region,Umiam, Meghalaya, India.
| | - Nilanjana Das
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Sudipa Mal
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | | | - Piyanki Das
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - R. Rajendra Reddy
- Clinical Proteomics, Institute of Life Sciences, Bhubaneswar, India.
| | - Syamantak Mukherjee
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| | - Ashok Kumar Das
- Department of ENT, Dr B. Borooah Cancer Institute, Guwahati, Assam, India.
| | - Zoreng Puii
- State Referral Hospital, Falkawn, Mizoram, India.
| | - Eric Zomawia
- State Referral Hospital, Falkawn, Mizoram, India.
| | - Yengkhom Indibor Singh
- Regional Institute of Medical Sciences, Department of Radiotherapy, Imphal, Manipur, India.
| | - Sam Tsering
- Tertiary cancer center,TomoRiba Institute of Health And Medical Sciences, Arunachal Pradesh, India.
| | - Komri Riba
- Tertiary cancer center,TomoRiba Institute of Health And Medical Sciences, Arunachal Pradesh, India.
| | - Shanmugam Rajasubramaniam
- Division of Genetic Disorders ICMR-National Institute of Research in Tribal Health, NIRTH Complex, Jabalpur, Madhya Pradesh, India.
| | | | - Tathagata Choudhuri
- Department of Biotechnology, Visva-Bharati, Santiniketan, Birbhum, West Bengal, India.
| |
Collapse
|
11
|
Xue W, Zheng Y, Shen Z, Li L, Fan Z, Wang W, Zhu Z, Zhai Y, Zhao J, Kan Q. Involvement of long non-coding RNAs in the progression of esophageal cancer. Cancer Commun (Lond) 2021; 41:371-388. [PMID: 33605567 PMCID: PMC8118593 DOI: 10.1002/cac2.12146] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 12/12/2020] [Accepted: 02/02/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal cancer (EC) is one of the most common malignant tumors of the digestive system with high incidence and mortality rate worldwide. Therefore, exploring the pathogenesis of EC and searching for new targeted therapies are the current research hotspot for EC treatment. Long non‐coding RNAs (lncRNAs) are endogenous RNAs with more than 200 nucleotides, but without protein‐coding function. In recent years, lncRNAs have gradually become the focuses in the field of non‐coding RNA. Some lncRNAs have been proved to be closely related to the pathogenesis of EC. Many lncRNAs are abnormally expressed in EC and participate in many biological processes including cell proliferation, apoptosis, and metastasis by inhibiting or promoting target gene expression. LncRNAs can also regulate the progression of EC through epithelial‐mesenchymal transformation (EMT), which is closely related to the occurrence, development, and prognosis of EC. In this article, we review and discuss the involvement of lncRNAs in the progression of EC.
Collapse
Affiliation(s)
- Wenhua Xue
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yuanyuan Zheng
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhibo Shen
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Lifeng Li
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Zhirui Fan
- Department of Oncology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Wenbin Wang
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Zijia Zhu
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| | - Yunkai Zhai
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Jie Zhao
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, Henan, 450052, P. R. China
| | - Quancheng Kan
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China.,Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, Henan, 450052, P. R. China
| |
Collapse
|
12
|
Imam N, Alam A, Siddiqui MF, Ahmed MM, Malik MZ, Ikbal Khan MJ, Ishrat R. Identification of key regulators in parathyroid adenoma using an integrative gene network analysis. Bioinformation 2020; 16:910-922. [PMID: 34803267 PMCID: PMC8573468 DOI: 10.6026/97320630016910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/16/2022] Open
Abstract
Parathyroid adenoma (PA) is marked by a certain benign outgrowth in the surface of parathyroid glands. The transcriptome analysis of parathyroid adenomas can provide a deep insight into actively expressed genes and transcripts. Hence, we analyzed and compared the gene expression profiles of parathyroid adenomas and healthy parathyroid gland tissues from Gene Expression Omnibus (GEO) database. We identified a total of 280 differentially expressed genes (196 up-regulated, 84 down-regulated), which are involved in a wide array of biological processes. We further constructed a gene interaction network and analyzed its topological properties to know the network structure and its hidden mechanism. This will help to understand the molecular mechanisms underlying parathyroid adenoma development. We thus identified 13 key regulators (PRPF19, SMC3, POSTN, SNIP1, EBF1, MEIS2, PAX9, SCUBE2, WNT4, ARHGAP10, DOCK5, CAV1 and VSIR), which are deep-rooted from top to bottom in the gene interaction network forming a backbone for the network. The structural features of the network are probably maintained by crosstalk between important genes within the network along with associated functional modules.Thus, gene-expression profiling and network approach could be used to provide an independent platform to glen insights from available clinical data.
Collapse
Affiliation(s)
- Nikhat Imam
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya-824234, Bihar, India
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Aftab Alam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Mohd Faizan Siddiqui
- International Medical Faculty, Osh State University, Osh City, 723500, Kyrgyz Republic, Kyrgyzstan
| | - Mohd Murshad Ahmed
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| | - Md. Zubbair Malik
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md. Jawed Ikbal Khan
- Institute of Computer Science and Information Technology, Department of Mathematics, Magadh University, Bodh Gaya-824234, Bihar, India
- Department of Mathematics, Mirza Ghalib College, Magadh University, Bodh Gaya-824234, Bihar, India
| | - Romana Ishrat
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi-110025, India
| |
Collapse
|
13
|
|
14
|
Abstract
Background Tooth agenesis, the congenital absence of one or more teeth, can be diagnosed in children in the first decade of life. Tooth agenesis is a phenotypic feature of conditions such as ectodermal dysplasia, cleft lip, cleft palate, Down syndrome, and Van der Woude syndrome. Tooth agenesis can also be nonsyndromic. Studies have shown an association between the genetic determinants of nonsyndromic tooth agenesis and neoplasms in adulthood. Methods This review of the implications of tooth agenesis as a risk indicator for neoplasms in adulthood is based on a search of PubMed to identify published case series, case reports, and review articles. The reference articles were manually searched. The search was limited to articles published in the English language. Results Neoplasms reported in patients with tooth agenesis include colorectal neoplasms and epithelial ovarian cancer, as well as family histories of breast cancer, prostate cancer, and cancers of the brain and nervous system. Conclusion Although odontogenesis and tumorigenesis may seem to be unrelated processes, the clinical association between the two highlights the overlap of genetic determinants and molecular pathways. Tooth agenesis can be diagnosed during childhood and should be considered a marker for risk of neoplasms in adulthood. Healthcare providers should identify tooth agenesis and provide appropriate anticipatory guidance.
Collapse
|
15
|
Xiong Z, Ren S, Chen H, Liu Y, Huang C, Zhang YL, Odera JO, Chen T, Kist R, Peters H, Garman K, Sun Z, Chen X. PAX9 regulates squamous cell differentiation and carcinogenesis in the oro-oesophageal epithelium. J Pathol 2018; 244:164-175. [PMID: 29055049 PMCID: PMC5842438 DOI: 10.1002/path.4998] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 10/05/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022]
Abstract
PAX9 is a transcription factor of the PAX family characterized by a DNA-binding paired domain. Previous studies have suggested a potential role of PAX9 in squamous cell differentiation and carcinogenesis of the oro-oesophageal epithelium. However, its functional roles in differentiation and carcinogenesis remain unclear. In this study, Pax9 deficiency in mouse oesophagus promoted cell proliferation, delayed cell differentiation, and altered the global gene expression profile. Ethanol exposure downregulated PAX9 expression in human oesophageal epithelial cells in vitro and mouse forestomach and tongue in vivo. We further showed that PAX9 was downregulated in human oro-oesophageal squamous cell carcinoma (OESCC), and its downregulation was associated with alcohol drinking and promoter hypermethylation. Moreover, ad libitum feeding with a liquid diet containing ethanol for 40 weeks or Pax9 deficiency promoted N-nitrosomethylbenzylamine-induced squamous cell carcinogenesis in mouse tongue, oesophagus, and forestomach. In conclusion, PAX9 regulates squamous cell differentiation in the oro-oesophageal epithelium. Alcohol drinking and promoter hypermethylation are associated with PAX9 silencing in human OESCC. PAX9 downregulation may contribute to alcohol-associated oro-oesophageal squamous cell carcinogenesis. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhaohui Xiong
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Shuang Ren
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Hao Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Yao Liu
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Caizhi Huang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Yawan Lyvia Zhang
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Joab Otieno Odera
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
| | - Tong Chen
- Division of Medical Oncology, Department of Internal Medicine, The Ohio State University, 410 West 12 Avenue, Columbus, OH 43210, USA
| | - Ralf Kist
- Centre for Oral Health Research, School of Dental Sciences, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4BW, UK
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Heiko Peters
- Institute of Human Genetics, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, NE1 3BZ, UK
| | - Katherine Garman
- Division of Gastroenterology, Department of Medicine, Duke University, DUMC 3913, Durham, NC 27710, USA
| | - Zheng Sun
- Department of Oral Medicine, Beijing Hospital for Stomatology, Capital Medical University, 4 Tian-Tan-Xi-Li, Beijing 100050, China
| | - Xiaoxin Chen
- Cancer Research Program, Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, 700 George Street, Durham, NC 27707, USA
- Center for Gastrointestinal Biology and Disease, Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|