1
|
Donato A, Ritchie FK, Lu L, Wadia M, Martinez-Marmol R, Kaulich E, Sankorrakul K, Lu H, Coakley S, Coulson EJ, Hilliard MA. OSP-1 protects neurons from autophagic cell death induced by acute oxidative stress. Nat Commun 2025; 16:300. [PMID: 39746999 PMCID: PMC11696186 DOI: 10.1038/s41467-024-55105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/21/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress, caused by the accumulation of reactive oxygen species (ROS), is a pathological factor in several incurable neurodegenerative conditions as well as in stroke. However, our knowledge of the genetic elements that can be manipulated to protect neurons from oxidative stress-induced cell death is still very limited. Here, using Caenorhabditis elegans as a model system, combined with the optogenetic tool KillerRed to spatially and temporally control ROS generation, we identify a previously uncharacterized gene, oxidative stress protective 1 (osp-1), that protects C. elegans neurons from oxidative damage. Using rodent and human cell cultures, we also show that the protective effect of OSP-1 extends to mammalian cells. Moreover, we demonstrate that OSP-1 functions in a strictly cell-autonomous fashion, and that it localizes to the endoplasmic reticulum (ER) where it has an ER-remodeling function. Finally, we present evidence suggesting that OSP-1 may exert its neuroprotective function by influencing autophagy. Our results point to a potential role of OSP-1 in modulating autophagy, and suggest that overactivation of this cellular process could contribute to neuronal death triggered by oxidative damage.
Collapse
Affiliation(s)
- Alessandra Donato
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Fiona K Ritchie
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Lachlan Lu
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Mehershad Wadia
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ramon Martinez-Marmol
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Eva Kaulich
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Kornraviya Sankorrakul
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Hang Lu
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Sean Coakley
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Elizabeth J Coulson
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Massimo A Hilliard
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
2
|
Zhu M, Zhang M, Tang M, Wang J, Liu L, Wang Z. The concentration-dependent physiological damage, oxidative stress, and DNA lesions in Caenorhabditis elegans by subacute exposure to landfill leachate. CHEMOSPHERE 2023; 339:139544. [PMID: 37474030 DOI: 10.1016/j.chemosphere.2023.139544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/04/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
The leakage of landfill leachate (LL) into environmental media would be happened even in the sanitary/controlled landfill, due to the deterioration of geomembrane and the blockage of drainage system after long-term operation. Considering the complex composition and high concentration of pollutants in LL, its toxicity assessment should be conducted as a whole liquid contaminant. Therefore, the impacts of LL on Caenorhabditis elegans (C. elegans) were investigated under the condition of different exposure time and exposure volume fraction (EVF). The stimulating effects on locomotion behavior and growth of C. elegans were observed after acute (24 h) exposure to LL, which were increased firstly and then decreased with the increase of EVF. Meanwhile, the intestinal barrier was not affected by LL, and levels of reactive oxygen species (ROS) and cell apoptosis significantly decreased. However, stimulation and inhibition effects on locomotion behavior and growth of C. elegans were observed when subacute (72 h) exposure to 0.25%-0.5% and 1%-4% of LL, respectively. The intestinal injury index and levels of ROS and cell apoptosis significantly increased when EVF were 2% and 4%. Although the acute exposure of LL had resulted in obviously biological adaptability and antioxidant defense in C. elegans, the protective mechanisms failed to be induced as the exposure time increased (subacute exposure). The toxic effects were confirmed by the down-regulation of genes associated with antioxidant defense and neurobehavior, accompanied by the up-regulation of intestinal injury and cell apoptosis related genes. Moreover, the disturbance of metabolic pathways that associated with locomotion behaviors, growth, and antioxidant defense provided good supplementary evidence for the confirmation of oxidative stress in C. elegans. The research results verified the potential of C. elegans as model organism to determine the complex toxic effects of LL.
Collapse
Affiliation(s)
- Manman Zhu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Meng Zhang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Mingqi Tang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jun Wang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lili Liu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Zhiping Wang
- School of Environment Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Pullaguri N, Umale A, Bhargava A. Neurotoxic mechanisms of triclosan: The antimicrobial agent emerging as a toxicant. J Biochem Mol Toxicol 2023; 37:e23244. [PMID: 36353933 DOI: 10.1002/jbt.23244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Several scientific studies have suggested a link between increased exposure to pollutants and a rise in the number of neurodegenerative disorders of unknown origin. Notably, triclosan (an antimicrobial agent) is used in concentrations ranging from 0.3% to 1% in various consumer products. Recent studies have also highlighted triclosan as an emerging toxic pollutant due to its increasing global use. However, a definitive link is missing to associate the rising use of triclosan and the growing number of neurodegenerative disorders or neurotoxicity. In this article, we present systematic scientific evidence which are otherwise scattered to suggest that triclosan can indeed induce neurotoxic effects, especially in vertebrate organisms including humans. Mechanistically, triclosan affected important developmental and differentiation genes, structural genes, genes for signaling receptors and genes for neurotransmitter controlling enzymes. Triclosan-induced oxidative stress impacting cellular proteins and homeostasis which triggers apoptosis. Though the scientific evidence collated in this article unequivocally indicates that triclosan can cause neurotoxicity, further epidemiological studies may be needed to confirm the effects on humans.
Collapse
Affiliation(s)
- Narasimha Pullaguri
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Ashwini Umale
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| |
Collapse
|
4
|
Wang L, Mao B, He H, Shang Y, Zhong Y, Yu Z, Yang Y, Li H, An J. Comparison of hepatotoxicity and mechanisms induced by triclosan (TCS) and methyl-triclosan (MTCS) in human liver hepatocellular HepG2 cells. Toxicol Res (Camb) 2018; 8:38-45. [PMID: 30713659 DOI: 10.1039/c8tx00199e] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 10/10/2018] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS) is used as an antimicrobial agent and has been widely dispersed and detected in the environment and organisms including human samples. Methyl-triclosan (MTCS) is the predominant bacterial TCS metabolite. At present, the toxicological effects and mechanism of TCS and MTCS are still not fully understood. In this study, the cytotoxic effects of TCS and MTCS in HepG2 cells were investigated in terms of cell proliferation, comet assay, cell cycle, and apoptosis. In addition, the expressions of related proteins were detected with western blotting analysis. The results showed that TCS could significantly inhibit cell proliferation, while MTCS had no obvious effect on cell growth. Both TCS and MTCS caused oxidative injury associated with HO-1 induction and increased DNA strand breaks, which consequently initiated the damage repair process via up-regulation of DNA-PKcs. In addition, TCS blocked the HepG2 cells in S and G2/M phases of cell cycle through down-regulation of cyclin A2 and CDK; while MTCS induced cell cycle arrest at the S phase through up-regulation of cyclin A2 and CDK. Furthermore, TCS activated p53 mediated apoptosis in HepG2 cells in a caspase-independent manner, while MTCS induced apoptosis was dependent on caspase. Moreover, TCS exposure exhibited more severe toxicity in HepG2 cells as compared with MTCS exposure, indicating that the replacement of the ionizable proton in TCS by the methyl group in MTCS is correlated with the cellular toxicity and the molecular mechanism.
Collapse
Affiliation(s)
- Lu Wang
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Boyu Mao
- Implant Dentistry Department , Jiangbei Dental Hospital , Ningbo 315000 , China
| | - Huixin He
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Yu Shang
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Yufang Zhong
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Yiting Yang
- Department of Neurology , Changhai Hospital , Second Military Medical University , Shanghai 200433 , China .
| | - Hui Li
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| | - Jing An
- School of Environmental and Chemical Engineering , Shanghai University , Shanghai 200444 , China . ; Tel: +86 21 66137736
| |
Collapse
|