1
|
Li J, Wei Y, Wang Y, Zhang Y, Xu Y, Ma H, Ma L, Zeng Q. Metabolomics study of APETx2 post-conditioning on myocardial ischemia-reperfusion injury. Front Pharmacol 2024; 15:1470142. [PMID: 39712499 PMCID: PMC11658994 DOI: 10.3389/fphar.2024.1470142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Background Acid-sensing ion channels are activated during myocardial ischemia and are implicated in the mechanism of myocardial ischemia-reperfusion injury (MIRI). Acid-sensing ion channel 3 (ASIC3), the most pH-sensitive member of the ASIC family, is highly expressed in myocardial tissues. However, the role of ASIC3 in MIRI and its precise effects on the myocardial metabolome remain unclear. These unknowns might be related to the cardioprotective effects observed with APETx2 post-conditioning. Method Rat hearts subjected to Langendorff perfusion were randomly assigned to the normal (Nor) group, ischemia/reperfusion (I/R) group, ASIC3 blockade (AP) group. Rat hearts in group AP were treated with the ASIC3-specific inhibitor APETx2 (630 nM). Molecular and morphological changes were observed to elucidate the role of ASIC3 in MIRI. Bioinformatics analyses identified differential metabolites and pathways associated with APETx2 post-conditioning. Results APETx2 post-conditioning stabilized hemodynamics in the isolated rat heart model of MIRI. It also reduced myocardial infarct size, mitigated mitochondrial damage at the ultrastructural level, and improved markers of myocardial injury and oxidative stress. Further more, we observed that phosphatidylcholine, phosphatidylethanolamine, citric acid, cyanidin 5-O-beta-D-glucoside, and L-aspartic acid decreased after MIRI. The levels of these metabolites were partially restored by APETx2 post-conditioning. These metabolites are primarily involved in autophagy and endogenous cannabinoid signaling pathways. Conclusion ASIC3 is potentially a key player in MIRI. APETx2 post-conditioning may improve MIRI through specific metabolic changes. This study provides valuable data for future research on the metabolic mechanisms underlying the effects of APETx2 post-conditioning in MIRI.
Collapse
Affiliation(s)
- Jing Li
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Affiliated Shenzhen Women and Children’s Hospital (Longgang) of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Shenzhen, Guangdong Province, China
| | - Yi Wang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yue Zhang
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Ying Xu
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Huanhuan Ma
- School of Anesthesiology, Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Lulin Ma
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, Sichuan Province, China
| | - Qingfan Zeng
- Department of Anesthesiology, The Affiliated Baiyun Hospital of Guizhou Medical University, Guiyang, Guizhou Province, China
- School of Anesthesiology, Guizhou Medical University, Guiyang, Guizhou Province, China
| |
Collapse
|
2
|
Zou J, Zhang S, Zhang X, Xiong L, Chen X, He Y, Duan C, Zhang J. Study on the protective mechanism of Xuemaitong Capsule against acute myocardial ischemia rat based on network pharmacology and metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1251:124373. [PMID: 39644825 DOI: 10.1016/j.jchromb.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/30/2024] [Accepted: 11/06/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Xuemaitong Capsule (XMT) is a widely recognized traditional Miao medicine extensively utilized in Chinese clinical settings. Previous studies have demonstrated XMT protective effects against acute myocardial ischemia (AMI). However, the mechanism by which XMT provides protection to AMI rats is yet to be fully understood. AIM OF THE STUDY The purpose of this study was to investigate the protective mechanism of XMT on AMI rats through network pharmacology, traditional pharmacodynamics and metabolomics. MATERIAL AND METHODS The components and potential targets of XMT were identified through the application of traditional Chinese medicine system pharmacology and traditional Chinese medicine molecular mechanism bioinformatics analysis tools. We constructed herb-composition-target networks and analyzed protein-protein interaction (PPI) networks. The potential mechanism was explored by pathway enrichment analysis. Subsequently, the AMI model was constructed by ligation of the anterior descending branch of the left coronary artery, and XMT protective effects on AMI rats were evaluated by analyzing the myocardial enzyme profiles, electrocardiograms(ECG), Triphenyltetrazolium chloride(TTC) staining, and Hematoxylin-Eosin (HE) staining in AMI rats. Metabolomics based on UHPLC-Q-Exactive Orbitrap MS was used to observe the protective effect of XMT on the serum metabolic profile of AMI, and multivariate statistical analysis further revealed the differential patterns of metabolites after XMT treatment. Finally, integrated pathway analysis was carried out to reveal the biological metabolic mechanism. RESULTS A total of 392 active components of XMT acted with 624 targets for treating AMI. Pathway enrichment analysis revealed that XMT could treat AMI through TNF, MAPK and PI3K-Akt signaling pathways. Further, XMT could effectively prevent ST-segment elevation in the ECG, reduce the size of myocardial infarction, decrease cardiac weight index and cardiac enzyme levels, and mitigate histological damage in the hearts of AMI rats. In addition, XMT callback 117 metabolites and four metabolic pathways, including taurine and hypotaurine metabolism, phenylalanine metabolism, pyrimidine metabolism and retinol metabolism. Through integrating network pharmacology and metabolomics, we explored the biological mechanism by which XMT treats AMI. It was speculated that the mechanism of XMT is to regulate TNF signaling, PI3K-Akt pathway and MAPK signaling pathway, and participate in cell apoptosis, oxidative stress, immune and inflammatory reaction and other biological processes. CONCLUSION XMT plays a protective role in AMI rats by regulating multiple metabolic biomarkers, multiple targets and pathways. Therefore, XMT may provide a potential strategy for the treatment of AMI.
Collapse
Affiliation(s)
- Jialu Zou
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Shizhong Zhang
- Affiliated Hospital of Zunyi Medical University, Zunyi 563000, China
| | - Xiaohong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Lijuan Xiong
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Xuan Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Yanmei He
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China
| | - Cancan Duan
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Jianyong Zhang
- School of Pharmacy and Key Laboratory of Basic Pharmacology Ministry Education and Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
3
|
Luan Y, Ding X, Zhang L, Huang S, Yang C, Tang Y, Xing L, Zhang H, Liu Z. Identification of Dalbergiae Odoriferae Lignum active ingredients and potential mechanisms in the treatment of adriamycin-induced cardiotoxicity based on network pharmacology and experimental verification. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6661-6675. [PMID: 38498061 DOI: 10.1007/s00210-024-03016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
The purpose of this study is to investigate the ingredients and mechanisms through which Dalbergiae Odoriferae Lignum (DOL) reduces adriamycin-induced cardiotoxicity. DOL's ingredients and drug targets were acquired from Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), and adriamycin-induced cardiotoxicity disease targets were gathered from GeneCards and National Center for Biotechnology Information (NCBI). The therapeutic targets of DOL against adriamycin-induced cardiotoxicity were identified by intersecting drug and disease targets. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) were conducted using R. Subsequently, core targets were determined and used for molecular docking with DOL ingredients. In vitro and in vivo experiments validated DOL's primary ingredients against adriamycin-induced cardiotoxicity efficacy. Western blot and immunohistochemistry verified its impact on target protein. After intersecting 530 drug targets and 51 disease targets, 19 therapeutic targets for DOL alleviated adriamycin-induced cardiotoxicity were received. Molecular docking demonstrated that DOL primary ingredient formononetin had a robust binding affinity for nitric oxide synthase 3 (NOS3). Experimental results showed that formononetin effectively mitigated adriamycin-induced cardiotoxicity. Additionally, western blot and immunohistochemistry showed that formononetin improved NOS3 expression. The network pharmacology and experimentation suggest that the primary ingredient of DOL, formononetin, may target NOS3 to act as a therapeutic agent for adriamycin-induced cardiotoxicity.
Collapse
Affiliation(s)
- Yuling Luan
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Xinyue Ding
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Lingxiao Zhang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Shuyan Huang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Chenghao Yang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Yueer Tang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Lina Xing
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China
| | - Hui Zhang
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China.
| | - Zongjun Liu
- Institute of Cardiovascular Translational Medicine, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, No. 164 Lanxi Road, Putuo District, Shanghai, China.
| |
Collapse
|
4
|
Wang A, Song Q, Li Y, Fang H, Ma X, Li Y, Wei B, Pan C. Effect of traditional Chinese medicine on metabolism disturbance in ischemic heart diseases. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118143. [PMID: 38583735 DOI: 10.1016/j.jep.2024.118143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/22/2024] [Accepted: 04/01/2024] [Indexed: 04/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ischemic heart diseases (IHD), characterized by metabolic dysregulation, contributes majorly to the global morbidity and mortality. Glucose, lipid and amino acid metabolism are critical energy production for cardiomyocytes, and disturbances of these metabolism lead to the cardiac injury. Traditional Chinese medicine (TCM), widely used for treating IHD, have been demonstrated to effectively and safely regulate the cardiac metabolism reprogramming. AIM OF THE REVIEW This study discussed and analyzed the disturbed cardiac metabolism induced by IHD and development of formulas, extracts, single herb, bioactive compounds of TCM ameliorating IHD injury via metabolism regulation, with the aim of providing a basis for the development of clinical application of therapeutic strategies for TCM in IHD. MATERIALS AND METHODS With "ischemic heart disease", "myocardial infarction", "myocardial ischemia", "metabolomics", "Chinese medicine", "herb", "extracts" "medicinal plants", "glucose", "lipid metabolism", "amino acid" as the main keywords, PubMed, Web of Science, and other online search engines were used for literature retrieval. RESULTS IHD exhibits a close association with metabolism disorders, including but not limited to glycolysis, the TCA cycle, oxidative phosphorylation, branched-chain amino acids, fatty acid β-oxidation, ketone body metabolism, sphingolipid and glycerol-phospholipid metabolism. The therapeutic potential of TCM lies in its ability to regulate these disturbed cardiac metabolisms. Additionally, the active ingredients of TCM have depicted wonderful effects in cardiac metabolism reprogramming in IHD. CONCLUSION Drawing from the principles of TCM, we have pinpointed specific herbal remedies for the treatment of IHD, and leveraged advanced metabolomics technologies to uncover the effect of these TCMs on metabolomics alteration. In the future, further clinical experimental studies should be included to explore whether more TCM medicines can play a therapeutic role in IHD by reversing cardiac metabolism disorders; multi-omics would be conducted to explore more pathways and genes targeting such metabolism reprogramming by TCMs, and to seek more TCM therapies for IHD.
Collapse
Affiliation(s)
- Anpei Wang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Qiubin Song
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yi Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Hai Fang
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Xiaoji Ma
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Yunxia Li
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| | - Chengxue Pan
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan, 450001, PR China.
| |
Collapse
|
5
|
Li L, Zhong S, Ye J, Hu S, Hu Z. Effect of Danhong injection on heart failure in rats evaluated by metabolomics. Front Med (Lausanne) 2023; 10:1259182. [PMID: 37859859 PMCID: PMC10582331 DOI: 10.3389/fmed.2023.1259182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023] Open
Abstract
Background Heart failure (HF) is characterized by reduced ventricular filling or ejection function due to organic or non-organic cardiovascular diseases. Danhong injection (DHI) is a medicinal material used clinically to treat HF for many years in China. Although prior research has shown that Danhong injection can improve cardiac function and structure, the biological mechanism has yet to be determined. Methods Serum metabolic analysis was conducted via ultra-high-performance liquid chromatography-quadrupole time-of-flight/mass spectrometry (UHPLC-QE/MS) to explore underlying protective mechanisms of DHI in the transverse aortic constriction (TAC)-induced heart failure. Multivariate statistical techniques were used in the research, such as unsupervised principal component analysis (PCA) and orthogonal projection to latent structures discriminant analysis (OPLS-DA). MetaboAnalyst and Kyoto Encyclopedia of Genes and Genomes (KEGG) were employed to pinpoint pertinent metabolic pathways. Results After DHI treatment, cardiac morphology and function as well as the metabolism in model rats were improved. We identified 17 differential metabolites and six metabolic pathways. Two biomarkers, PC(18:3(6Z,9Z,12Z)/24:0) and L-Phenylalanine, were identified for the first time as strong indicators for the significant effect of DHI. Conclusion This study revealed that DHI could regulate potential biomarkers and correlated metabolic pathway, which highlighted therapeutic potential of DHI in managing HF.
Collapse
Affiliation(s)
- Lin Li
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Changsha, Hunan, China
| | - Senjie Zhong
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jiahao Ye
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Post-Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyuan Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Zhixi Hu
- The Domestic First-class Discipline Construction Project of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
6
|
Lu H, Gong J, Zhang T, Jiang Z, Dong W, Dai J, Ma F. Leonurine pretreatment protects the heart from myocardial ischemia-reperfusion injury. Exp Biol Med (Maywood) 2023; 248:1566-1578. [PMID: 37873701 PMCID: PMC10676124 DOI: 10.1177/15353702231198066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/14/2023] [Indexed: 10/25/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R), an important complication of reperfusion therapy for myocardial infarction, is characterized by hyperactive oxidative stress and inflammatory response. Leonurine (4-guanidino-n-butyl syringate, SCM-198), an alkaloid extracted from Herbaleonuri, was previously found to be highly cardioprotective both in vitro and in vivo. Our current study aimed to investigate the effect of SCM-198 preconditioning on myocardial I/R injury in vitro and in vivo, respectively, as well as to decipher the mechanism involved. Rats were pretreated with SCM-198 before subjected to 45 min of myocardial ischemia, which was followed by 24 h of reperfusion. Primary neonatal rat cardiac ventricular myocytes (NRCMs) were exposed to hypoxia (95% N2 + 5% CO2) for 12 h, and then to 12 h reoxygenation so as to mimic I/R. The enzymatic measurements demonstrated that SCM-198 reduced the release of infarction-related enzymes, and the hemodynamic and echocardiography measurements showed that SCM-198 restored cardiac functions, which suggested that SCM-198 could significantly reduce infarct size, maintaining cardiomyocyte morphology, and that SCM-198 pretreatment could significantly reduce cardiomyocytes apoptosis. Moreover, we demonstrated that SCM-198 could exert a cardioprotective effect by reducing reactive oxygen species (ROS) level and Akt phosphorylation while reducing the phosphorylation of p38 and JNK. In addition, the upregulation of p-Akt, Bcl-2/Bax induced by SCM-198 treatment were blocked by PI3K inhibitor LY294002, and the total protein level of Akt was not affected by SCM-198 pretreatment. Our experimental results indicated that SCM-198 could have a cardioprotective effect on I/R injury, which confirmed the utility of SCM-198 preconditioning as a strategy to prevent I/R injury.
Collapse
Affiliation(s)
- Huiping Lu
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jingru Gong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Tongtong Zhang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Zhe Jiang
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenmin Dong
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jing Dai
- Department of Clinical Diagnostics, Hebei Medical University, Shijiazhuang 050017, China
| | - Fenfen Ma
- Department of Pharmacy, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
7
|
Wang J, Li X, Chang H, Si N. Network pharmacology and bioinformatics study on the treatment of renal fibrosis with persicae semen-carthami flos drug pair. Medicine (Baltimore) 2023; 102:e32946. [PMID: 36827014 PMCID: PMC11309690 DOI: 10.1097/md.0000000000032946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 02/25/2023] Open
Abstract
To use network pharmacology and bioinformatics technology to reveal the mechanism of persicae semen-carthami flos drug pair in the treatment of renal fibrosis (RF). Compounds in traditional Chinese medicine were obtained through the Herb database. Appropriate compounds and corresponding drug targets were screened out based on the 5 rules of Lipinski and pharmacokinetics. Screening of suitable disease miRNAs by microarray chips in the GEO database. Find differentially expressed genes by analyzing miRNAs. Protein-protein interaction analysis and enrichment analysis of therapeutic targets were performed using String database and Omicshare platform. Molecular docking via the DockThor platform. A total of 28 drug compounds and 228 drug targets were screened in this study. A total of 9 miRNAs and 6649 disease targets were obtained by GEO2R software analysis. Finally, 97 therapeutic targets were obtained. A total of 1124 Gene Ontology enrichment analysis results were obtained. Therapeutic targets play multiple roles in biological processes, molecular functions, and cellular organization. Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis showed that the persicae semen-carthami flos drug pair played a role in the treatment of RF mainly through calcium signaling pathway, pathways in cancer, cAMP signaling pathway, and other pathways. Molecular docking showed that the traditional Chinese medicine compounds had good binding ability to the target. Persicae semen and carthami flos play a role in the treatment of RF through multiple targets and multiple pathways. It provides ideas and references for follow-up research and new drug development.
Collapse
Affiliation(s)
- Jiao Wang
- Changzhi People’s Hospital, Changzhi, Shanxi, China
| | - Xinghua Li
- Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, China
| | - Hong Chang
- Department of Pharmacy, Baotou Medical College, Baotou, Inner Mongolia, China
| | - Na Si
- Changzhi People’s Hospital, Changzhi, Shanxi, China
| |
Collapse
|
8
|
Dong L, Shen Z, Chi H, Wang Y, Shi Z, Fang H, Yang Y, Rong J. Research Progress of Chinese Medicine in the Treatment of Myocardial Ischemia-Reperfusion Injury. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 51:1-17. [PMID: 36437553 DOI: 10.1142/s0192415x23500015] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vascular recanalization is the essential procedure in which severe coronary artery stenosis is diagnosed. However, the blood flow recovery associated with this procedure may cause myocardial ischemia-reperfusion injury (MIRI), which aggravates heart failure. Unfortunately, the mechanism of MIRI has historically been poorly understood. As we now know, calcium overloading, oxidative stress, mitochondrial dysfunction, inflammatory responses, and ferroptosis take part in the process of MIRI. Modern medicine has shown through clinical studies its own limited effects in the case of MIRI, whereas Chinese traditional medicine demonstrates a strong vitality. Multiple-target effects, such as anti-inflammatory, anti-oxidant, and cardio-protection effects, are central to this vitality. In our clinic center, Yixin formula is commonly used in patients with MIRI. This formula contains Astragalus, Ligusticum Wallichii, Salvia, Rhodiola Rosea, Radix Angelicae Sinensis, Cyperus Rotundus, and Cassia Twig. Its effects include warming yang energy, activating blood circulation, and eliminating blood stasis. In our previous laboratory studies, we have proved that it can reduce MIRI and oxidative stress injury in rats suffering from ischemia myocardiopathy. It can also inhibit apoptosis and protect myocardium. In this paper, we review the research of Yixin formula and other related herbal medicines in MIRI therapy.
Collapse
Affiliation(s)
- Li Dong
- Institute of Cardiology of Integrated Traditional, Chinese and Western Medicine, P. R. China
| | - Zhijie Shen
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Hao Chi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Yingjie Wang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Zhaofeng Shi
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Hongjun Fang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| | - Yanling Yang
- Institute of Cardiology of Integrated Traditional, Chinese and Western Medicine, P. R. China
| | - Jingfeng Rong
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200135, P. R. China
| |
Collapse
|
9
|
Xin-Ji-Er-Kang Alleviates Isoproterenol-Induced Myocardial Hypertrophy in Mice through the Nrf2/HO-1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7229080. [PMID: 36045660 PMCID: PMC9423967 DOI: 10.1155/2022/7229080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
Abstract
Xin-Ji-Er-Kang (XJEK) inhibited cardiovascular remodeling in hypertensive mice in our previous studies. We hypothesized that XJEK may prevent isoproterenol (ISO)-induced myocardial hypertrophy (MH) in mice by ameliorating oxidative stress (OS) through a mechanism that may be related to the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1(HO-1) pathways. Forty SPF male Kunming mice were randomized into 5 groups (n = 8 mice per group): control group, MH group, MH + different doses of XJEK (7.5 g/kg/day and 10 g/kg/day), and MH + metoprolol (60 mg/kg/day). On the eighth day after drug treatment, electrocardiogram (ECG) and echocardiography were performed, the mice were sacrificed, and blood and heart tissues were collected for further analysis. XJEK administration markedly ameliorated cardiovascular remodeling (CR), as manifested by a decreased HW/BW ratio and CSA and less collagen deposition after MH. XJEK administration also improved MH, as evidenced by decreased atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), and β-myosin heavy chain (β-MHC) levels. XJEK also suppressed the decreased superoxide dismutase (SOD) and catalase (CAT) activities and increased malondialdehyde (MDA) levels in serum of mice with MH. XJEK-induced oxidative stress may be related to potentiating Nrf2 nuclear translocation and HO-1 expression compared with the MH groups. XJEK ameliorates MH by activating the Nrf2/HO-1 signaling pathway, suggesting that XJEK is a potential treatment for MH.
Collapse
|
10
|
Cui J, Shi Y, Xu X, Zhao F, Zhang J, Wei B. Identifying the cardioprotective mechanism of Danyu Tongmai Granules against myocardial infarction by targeted metabolomics combined with network pharmacology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 98:153829. [PMID: 35104768 DOI: 10.1016/j.phymed.2021.153829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Danyu Tongmai Granules (DY), the commercial Chinese medicine, was well-accepted cardiovascular protective actions in clinic. However, the mechanisms underlying the beneficial effects of DY on cardiovascular disease still need largely to be clarified. PURPOSE Therefore, this study was designed to explore potential mechanisms of DY in myocardial infarction (MI) by integrated strategy of metabolomics and network pharmacology. METHODS Cardiomyocytes were subjected to H2O2 induced myocardial injury and rats were induced MI via isoproterenol (ISO) injection. The entire metabolic alterations in serum and heart tissues of experimental rats were profiled by UPLC-MS/MS. Based on the identified differential metabolites, the pathway analysis results were obtained and further validated using the network pharmacology approach. RESULTS We found that DY exerted significant cardioprotective effects in vitro and in vivo, and ameliorated inflammatory cell infiltration and cardiomyocyte apoptosis induced by ISO. The metabolomics data suggested that DY mainly affected the amino acid metabolism (i.e., valine, leucine and isoleucine biosynthesis, arginine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, phenylalanine metabolism, arginine biosynthesis, glycine, serine, as well as the alanine metabolism, aspartate and glutamate metabolism, etc.). Simultaneously, DY participated in the regulation of the biosynthesis of bile acids and biosynthesis of unsaturated fatty acids. Notably, DY significantly reduced the biosynthesis of valine, leucine and isoleucine to regulating the metabolism of branched chain amino acids (BCAAs) in infarcted myocardium, thus blocking the inflammation via inhibiting the expression of NLRP3 inflammasome in ISO-induced rats. The anti-inflammatory system of DY was further validated with the results of network pharmacology. CONCLUSION Our study, for the first time, confirmed that DY inhibited inflammation and further exerted significant anti-myocardial infarction effect. Additionally, our work further demonstrated that the myocardial protective effect of DY was contributed to the inhibition of the NLRP3 inflammasome activation by regulating BCAAs in infarcted myocardium using the comprehensive metabolomics, molecular biology and network analysis. Overall, our study gained new insights into the role of the relationship between the metabolic regulation of BCAAs and the NLRP3 inflammasome against MI.
Collapse
Affiliation(s)
- Jing Cui
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Yangyang Shi
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xueli Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Fei Zhao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Ji Zhang
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou 450052, China
| | - Bo Wei
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
11
|
Liao J, Li T, Hua Y, Shao M, Wang Y, Wang Z, Wei K, Chang J, Zhang X, Chen M, Li X, Du J. Traditional Chinese medicine for acute coronary syndrome: A meta-analysis of clinical manifestations and objective indicators. Medicine (Baltimore) 2021; 100:e26927. [PMID: 34414950 PMCID: PMC8376385 DOI: 10.1097/md.0000000000026927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 07/27/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Modern clinical trials and experimental researches of traditional Chinese medicine (TCM) have been conducted for decades and provided support for the prevention and treatment of acute coronary syndrome (ACS). However the level of evidence and the proper application of TCM were still barely satisfactory. METHODS In this study, we divided ACS into 3 different stages, including unstable angina, acute myocardial infarction, and post myocardial infarction. Then we systematically reviewed and meta-analyzed the existing randomized controlled trials on both clinical manifestations and objective indicators, in these 3 aspects. RESULTS The results indicate that TCM can both improve the clinical manifestations and ameliorate the objective parameters in different courses of ACS, including C-reactive protein in unstable angina, left ventricular ejection fraction in acute myocardial infarction and post myocardial infarction. And the incidence of short-term cardiovascular events are lower in TCM intervention group. Some of the improvements lead to potential long-term benefits. CONCLUSION TCM treatment is beneficial to different courses of ACS. To acquire more solid and comprehensive evidence of TCM in treating ACS, more rigorously designed randomized controlled trials with longer follow-up duration are warranted.
Collapse
Affiliation(s)
- Jiangquan Liao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Tao Li
- Department of Cardiology, Shenzhen Traditional Chinese medicine hospital, Shenzhen, China
| | - Yingying Hua
- Department of Traditional Chinese medicine, Beijing Fuxing Hospital, Capital Medical University, Beijing, China
| | - Mingjing Shao
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Yan Wang
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Zhe Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Kangkang Wei
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jiangmeng Chang
- Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science. Xiangyang, China
| | - Xiaoqiong Zhang
- Department of Cardiology, Jiangmen Wuyi Hospital of Traditional Chinese medicine, Jiangmen, China
| | - Ming Chen
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Xianlun Li
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| | - Jinhang Du
- National Integrated Traditional and Western Medicine Center for Cardiovascular Disease, China–Japan Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Salvia miltiorrhiza and the Volatile of Dalbergia odorifera Attenuate Chronic Myocardial Ischemia Injury in a Pig Model: A Metabonomic Approach for the Mechanism Study. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8840896. [PMID: 34007406 PMCID: PMC8099511 DOI: 10.1155/2021/8840896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Salvia miltiorrhiza (SM) coupled with Dalbergia odorifera (DO) has been used to relieve cardiovascular diseases in China for many years. Our previous studies have integrated that SM—the volatile oil of DO (SM-DOO)—has a cardioprotective effect on chronic myocardial ischemia based on a pharmacological method, but the cardioprotective mechanism has not been elucidated completely in the metabonomic method. In the present study, a metabonomic method based on high-performance liquid chromatography time-of-flight mass spectrometry (HPLC-Q-TOF-MS) was performed to evaluate the effects of SM-DOO on chronic myocardial ischemia induced by an ameroid constrictor, which was placed on the left anterior descending coronary artery (LAD) of pigs. Pigs were divided into three groups: sham, model, and SM-DOO group. With multivariate analysis, a clear cluster among the different groups was obtained and the potential biomarkers were recognized. These biomarkers were mainly related to energy metabolism, glucose metabolism, and fatty acid metabolism. Furthermore, the protein expressions of phosphorylated AMP-activated protein kinase (p-AMPK) and glucose transporter-4 (GLUT4) were significantly upregulated by SM-DOO. The result indicated that SM-DOO could regulate the above biomarkers and metabolic pathways, especially energy metabolism and glucose metabolism. By analyzing and verifying the biomarkers and metabolic pathways, further understanding of the cardioprotective effect of SM-DOO with its mechanism was evaluated. Metabonomic is a reliable system biology approach for understanding the cardioprotective effects of SM-DOO on chronic myocardial ischemia and elucidating the mechanism underlying this protective effect.
Collapse
|
13
|
Chen X, Li H, Zhang B, Deng Z. The synergistic and antagonistic antioxidant interactions of dietary phytochemical combinations. Crit Rev Food Sci Nutr 2021; 62:5658-5677. [PMID: 33612011 DOI: 10.1080/10408398.2021.1888693] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The frequent intake of whole foods and dietary food variety is recommended due to their health benefits, such as prevention of multiple chronic diseases, including cancer, Alzheimer's disease, cardiovascular diseases, and type 2 diabetes mellitus. Often, consuming whole fruits or vegetables showed the enhanced effects than consuming the individual dietary supplement from natural products, which is widely explained by the interactive effects of co-existing phytochemicals in whole foods. Although research relevant to interactive effects among the bioactive compounds mounted up, the mechanism of interaction is still not clear. Especially, biological influence factors such as bioavailability are often neglected. The present review summarizes the progress on the synergistic and antagonistic effects of dietary phytochemicals, the evaluating models for antioxidant interactions, and the possible interaction mechanisms both in vitro and in vivo, and with an emphasis on biological-related molecular mechanisms of phytochemicals. The research on the interaction mechanism is of value for guiding how to take advantage of synergistic effects and avoid antagonistic effects in daily diets or phytochemical-based treatments for preventing chronic diseases.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang
| | - Hongyan Li
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang
| | - Bing Zhang
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang
| | - Zeyuan Deng
- State Key Laboratory of Food Science and Technology, University of Nanchang, Jiangxi, China Nanchang.,Institute for Advanced Study, University of Nanchang, Nanchang, Jiangxi, China
| |
Collapse
|
14
|
Cardioprotective Effects of Latifolin Against Doxorubicin-Induced Cardiotoxicity by Macrophage Polarization in Mice. J Cardiovasc Pharmacol 2021; 75:564-572. [PMID: 32217949 PMCID: PMC7266001 DOI: 10.1097/fjc.0000000000000827] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Latifolin, one of the major flavonoids extracted from lignum dalbergiae odoriferae, has been documented to protect the heart from acute myocardial ischemia induced by pituitrin and isoproterenol in rats and has also been found to inhibit inflammation. In this study, we aimed to investigate whether latifolin could protect the heart from doxorubicin (DOX)-induced cardiotoxicity and elucidate its underlying mechanisms. Male mice were treated with an intraperitoneal dose of DOX (20 mg/kg) plus oral latifolin at a dose of 50 or 100 mg/kg for 12 days. After exposure, we assessed cardiac function, myocardial injury, and macrophage polarization in excised cardiac tissue. Our results demonstrated that latifolin prevented DOX-induced cardiac dysfunction and produced macrophage polarization in mice challenged with latifolin. In cultured peritoneal macrophages, latifolin significantly reduced inflammatory cytokines (P < 0.05). Furthermore, latifolin remarkably decreased the percentage of macrophage M1/M2 polarization (P < 0.05). The results from the present study highlight the benefits of treatment with latifolin in DOX-induced cardiotoxicity, and the mechanism involved in mediating the polarization phenotype change of M1/M2 macrophages.
Collapse
|
15
|
Li J, Li H, Wang Y, Liu M, Sun X, Huang P, Cheng W. Rapid Discrimination of Radix Salviae Miltiorrhizae Using Fourier-Transform Infrared Microspectroscopy. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1718160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Jincai Li
- School of Pharmacy, Bozhou Vocational and Technical College, Bozhou, China
| | - Huanhuan Li
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Yuanyuan Wang
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Mei Liu
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Xiaohong Sun
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Peng Huang
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| | - Wangxing Cheng
- School of Pharmacy and Key Laboratory of Chinese Medicinal Formula of Anhui Province, Anhui University Chinese Medicine, Hefei, China
| |
Collapse
|
16
|
Jeon SY, Kim MR, Yu SH, Kim MJ, Shim KS, Shin E, Lee JJ, Lee YC. Combined Extract of Vitis vinifera L. and Centella asiatica Synergistically Attenuates Oxidative Damage Induced by Hydrogen Peroxide in Human Umbilical Vein Endothelial Cells. Prev Nutr Food Sci 2020; 25:173-183. [PMID: 32676469 PMCID: PMC7333004 DOI: 10.3746/pnf.2020.25.2.173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
Endothelial cell injury caused by oxidative stress is a critical factor in the initial stage of vascular diseases. Thus, identification of more effective antioxidants is a promising strategy to protect against endothelial cell injury. Recently, synergistic effects between phytochemicals have received renewed attention for their role in the treatment of various diseases. Vitis vinifera L. and Centella asiatica are well-known medicinal plants with various biological effects. However, the combination of the two has not previously been studied. Here, we investigated the effects of V. vinifera L. leaf and C. asiatica extract combination (VCEC), a standardized herbal blend comprising V. vinifera L. leaf extract (VE) and C. asiatica extract (CE), for its antioxidant activity and for the protection of endothelial cells against hydrogen peroxide (H2O2)-mediated oxidative damage in human umbilical vein endothelial cells (HUVECs). VCEC showed higher antioxidant activity than VE or CE in oxygen radical antioxidant capacity assays. In HUVECs, VCEC significantly suppressed increases in the production of intracellular reactive oxygen species, decreased levels of nitric oxide and vascular endothelial-cadherin, and increased endothelial hyperpermeability triggered by H2O2. Treatment with VE or CE alone ameliorated HUVEC injury in a pattern similar to VCEC, although their effects were significantly weaker than VCEC. Overall, VCEC exhibited a substantial synergistic effect on protecting endothelial cells against oxidative damage through its antioxidant activity. Therefore, VCEC could be developed as a potential agent for reducing the risk of vascular diseases related to oxidative stress.
Collapse
Affiliation(s)
- Se Yeong Jeon
- R&D Center, Naturetech Co., Ltd., Chungnam 31257, Korea
| | - Mi Ran Kim
- R&D Center, Naturetech Co., Ltd., Chungnam 31257, Korea
| | - Su Hyun Yu
- R&D Center, Naturetech Co., Ltd., Chungnam 31257, Korea
| | | | | | | | - Jeong Jun Lee
- R&D Center, Naturetech Co., Ltd., Chungnam 31257, Korea
| | | |
Collapse
|
17
|
Zhao X, Wang C, Meng H, Yu Z, Yang M, Wei J. Dalbergia odorifera: A review of its traditional uses, phytochemistry, pharmacology, and quality control. JOURNAL OF ETHNOPHARMACOLOGY 2020; 248:112328. [PMID: 31654799 DOI: 10.1016/j.jep.2019.112328] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/18/2019] [Accepted: 10/19/2019] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dalbergia odorifera, a traditional herbal medicine, has long been used in China for dissipating blood stasis, regulating the flow of qi, and relieving pain. AIM OF THIS REVIEW This review aims to provide comprehensive and up-to-date information about the traditional uses, phytochemistry, pharmacology, and quality control of D. odorifera. Additionally, perspectives for possible future investigations on D. odorifera are also discussed. MATERIALS AND METHODS Information on D. odorifera was obtained from a library database and electronic searches (e.g., Elsevier, Springer, ScienceDirect, Wiley, Web of Science, PubMed, Google Scholar, China Knowledge Resource Integrated). RESULTS According to classical Chinese herbal texts and the Chinese Pharmacopoeia, D. odorifera promotes blood circulation, relieves pain, and eliminates blood stasis, and it can be used to treat cardio-cerebrovascular diseases in traditional Chinese medicine prescriptions. The chemical constituents of D. odorifera have been well studied, with approximately 175 metabolites having been identified, including flavonoids, phenols, arylbenzofurans, and quinones. The species also contains well-studied volatile oil. Its flavonoids and volatile oil are generally considered to be essential for its pharmacological activity. Modern pharmacology research has confirmed that isolated components and crude extracts of D. odorifera possess wide-ranging pharmacological effects, including anti-inflammatory, anti-angina, anti-oxidative, and other activities. Additionally, there are few quality control studies on D. odorifera. CONCLUSIONS To date, significant progress has been made in D. odorifera phytochemistry and pharmacology. Thus, modern pharmacological research has provided some evidence for local or traditional uses. D. odorifera also showed therapeutic potential in cardiovascular and coronary heart diseases. However, the present findings are insufficient to explain its mechanisms of action. Additionally, the mechanism of heartwood formation, artificial induction technology for heartwood production, and quality control of D. odorifera require further detailed research.
Collapse
Affiliation(s)
- Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Canhong Wang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Hui Meng
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Zhangxin Yu
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China
| | - Meihua Yang
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Jianhe Wei
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Haikou, 570311, China; Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China.
| |
Collapse
|
18
|
Zhao M, Li F, Jian Y, Wang X, Yang H, Wang J, Su J, Lu X, Xi M, Wen A, Li J. Salvianolic acid B regulates macrophage polarization in ischemic/reperfused hearts by inhibiting mTORC1-induced glycolysis. Eur J Pharmacol 2020; 871:172916. [PMID: 31930970 DOI: 10.1016/j.ejphar.2020.172916] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 12/23/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022]
Abstract
Macrophages play important roles in the healing and remodeling of cardiac tissues after myocardial ischemia/reperfusion (MI/R) injury. Here we investigated the potential effects of salvianolic acid B (SalB), one of the abundant and bioactive compounds extracted from Chinese herb Salvia Miltiorrhiza (Danshen), on macrophage-mediated inflammation after MI/R and the underlying mechanisms. In primary cultured bone marrow-derived macrophages (BMDMs), SalB attenuated lipopolysaccharide (LPS)-induced M1 biomarkers (IL-6, iNOS, CCL2 and TNF-α) mRNA expression in a concentration-dependent manner. In contrast, M2 biomarkers (Arg1, Clec10a and Mrc) mRNA levels following interleukinin-4 (IL-4) stimulation were significantly upregulated by SalB. In addition, LPS stimulation potently induced transcriptional upregulation of RagD, an important activation factor of mammalian target of rapamycin complex 1 (mTORC1). Interestingly, SalB inhibited RagD upregulation and mTORC1 activation, decreased glycolysis, and reduced inflammatory cytokine production in LPS-stimulated macrophages, all of which were blunted in RagD knockdown macrophages. In mice subjected to MI/R, SalB treatment decreased cardiac M1-macrophages and increased M2-macrophages at 3 days post-MI/R, followed by decreased collagen deposition and ameliorated cardiac dysfunction at 7 days post-MI/R. Collectively, our data have shown that SalB decreases M1-polarized macrophages in MI/R hearts via inhibiting mTORC1-dependent glycolysis, which might contribute to alleviated inflammation and improved cardiac dysfunction afforded by SalB after MI/R.
Collapse
Affiliation(s)
- Meina Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, 712046, China
| | - Fei Li
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Yufan Jian
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinpei Wang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Hongyan Yang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jun Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; Department of Anesthesiology, Shaanxi Armed Police Corps Hospital, Xi'an, Shaanxi, 710054, China
| | - Jing Su
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Xinming Lu
- YouYi Clinical Laboratories of Shaanxi, Xi'an, Shaanxi, 710065, China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; TANK Medicinal Biology Institute of Xi'an, Xi'an, Shaanxi, 710032, China.
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China.
| | - Jia Li
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
19
|
Wu GS, Li HK, Zhang WD. Metabolomics and its application in the treatment of coronary heart disease with traditional Chinese medicine. Chin J Nat Med 2020; 17:321-330. [PMID: 31171266 DOI: 10.1016/s1875-5364(19)30037-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 12/19/2022]
Abstract
Traditional Chinese Medicine (TCM) is the treasure of Chinese Nation and gained the gradual acceptance of the international community. However, the methods and theories of TCM understanding of diseases are lack of appropriate modern scientific characterization systems. Moreover, traditional risk factors cannot promote to detection and prevent those patients with coronary artery disease (CAD) who have not developed acute myocardial infarction (MI) in time. To sum up, there is still no objective systematic evaluation system for the therapeutic mechanism of TCM in the prevention and cure of cardiovascular disease. Thus, new ideas and technologies are needed. The development of omics technology, especially metabolomics, can be used to predict the level of metabolites in vivo and diagnose the physiological state of the body in time to guide the corresponding intervention. In particular, metabolomics is also a very powerful tool to promote the modernization of TCM and the development of TCM in personalized medicine. This article summarized the application of metabolomics in the early diagnosis, the discovery of biomarkers and the treatment of TCM in CAD.
Collapse
Affiliation(s)
- Gao-Song Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hou-Kai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Wei-Dong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; School of Pharmacy, Second Military Medical University, Shanghai 200433, China.
| |
Collapse
|
20
|
Shi B, Li Q, Feng Y, Dai X, Zhao R, Zhao Y, Jia P, Wang S, Yu J, Liao S, Li YF, Zheng X. Pharmacokinetics of 13 active components in a rat model of middle cerebral artery occlusion after intravenous injection of Radix Salviae miltiorrhizae-Lignum dalbergiae odoriferae prescription. J Sep Sci 2019; 43:531-546. [PMID: 31654547 DOI: 10.1002/jssc.201900748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 12/30/2022]
Abstract
As a representative formulation of Radix Salviae miltiorrhizae (Danshen)-Lignum Dalbergiae odoriferae (Jiangxiang), Xiangdan injection is widely prescribed for cardio- and cerebrovascular diseases in practice. This necessitates a pharmacokinetic investigation of this formulation to make it safer and more broadly applicable. We developed and validated a sensitive, selective, and reliable high-performance liquid chromatography with tandem mass spectrometry method for the simultaneous determination of 11 phenolic compounds including danshensu plus two diterpenoid quinones like cryptotanshinone and tanshinone IIA in rat. We applied this method for the pharmacokinetic studies of the 13 compounds in a rat model of middle cerebral artery occlusion after intravenous injection of Xiangdan injection or Danshen injection. In sham-operated rats, the animals taking Xiangdan injection exhibited significant growth of the area under the curve for danshensu, protocatechuic aldehyde, and tanshinone IIA compared with the changes seen in the data of those administrated with Danshen injection. Such a pattern was also observed in middle cerebral artery occlusion rats, whereas increased the area under the curve values were observed for danshensu, protocatechuic aldehyde, caffeic acid, rosmarinic acid, and tanshinone IIA. These results demonstrated that synergistic interactions occurred between the components of Danshen and the active compounds of Jiangxiang both in sham-operated and middle cerebral artery occlusion rats, increasing the bioavailability of Danshen. The results presented herein can be used to determine a reference dose for the clinical application of Xiangdan injection, and to elucidate the synergistic mechanism of Danshen and Jiangxiang.
Collapse
Affiliation(s)
- Baimei Shi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Qiannan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Ying Feng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Xufen Dai
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Rui Zhao
- School of Life Science, Anhui Agricultural University, Hefei, P. R. China
| | - Ye Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Pu Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Shixiang Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Jie Yu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Sha Liao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| | - Yi-Fei Li
- Technology Center of China Tobacco Fujian Industrial Co., Ltd., Xiamen, P. R. China
| | - Xiaohui Zheng
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, P. R. China
| |
Collapse
|
21
|
Liu Y, Zou J, Liu X, Zhang Q. MicroRNA-138 attenuates myocardial ischemia reperfusion injury through inhibiting mitochondria-mediated apoptosis by targeting HIF1-α. Exp Ther Med 2019; 18:3325-3332. [PMID: 31602205 PMCID: PMC6777330 DOI: 10.3892/etm.2019.7976] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is considered to have a detrimental role in coronary heart disease, which is considered to be the leading cause of death worldwide. However, the molecular mechanism involved in the progression of myocardial I/R injury is still unclear. The current study aimed to investigate the expression and function of microRNA (miR)-138 in the process of myocardial I/R injury. First, miR-138 expression levels were analyzed both in myocardium with I/R injury and control myocardium using reverse transcription-quantitative polymerase chain reaction analysis. Then, the relationship between the levels of miR-138 and hypoxia-inducible factor (HIF)1-α was also investigated using a luciferase reporter assay. Assessment of myocardial infarct size, measurements of serum myocardial enzymes and electron microscopy analysis were all utilized to analyse the effect of miR-138 on myocardial I/R injury. The authors of current study also used western blotting to examine the expression levels of the mitochondrial fission-related proteins dynamin-1-like protein and mitochondrial fission 1 protein. It was found that miR-138 is downregulated and HIF1-α is upregulated after myocardial ischemia reperfusion injury. Overexpression of miR-138 reduced myocardial I/R injury-induced infarct sizes and myocardial enzyme levels, and it also inhibited the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting HIF1-α. Taken together, these findings provide a novel insight into the molecular mechanism of miR-138 and HIF1-α in the progression of myocardial I/R injury. miR-138 has the potential to become a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Yan Liu
- The First Ward, Department of Cardiology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Jianfeng Zou
- The Third Ward, Department of Cardiology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Xiaoyan Liu
- The First Ward, Department of Cardiology, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Quan Zhang
- Department of Cardiology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 260141, P.R. China
| |
Collapse
|
22
|
Han XJ, Li H, Liu CB, Luo ZR, Wang QL, Mou FF, Guo HD. Guanxin Danshen Formulation improved the effect of mesenchymal stem cells transplantation for the treatment of myocardial infarction probably via enhancing the engraftment. Life Sci 2019; 233:116740. [PMID: 31398416 DOI: 10.1016/j.lfs.2019.116740] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/03/2019] [Accepted: 08/05/2019] [Indexed: 10/26/2022]
Abstract
Although intravenous injection is the most convenient and feasible approach for mesenchymal stem cells (MSCs) delivery, the proportion of donor stem cells in the target myocardium after transplantation is small. It is believed that TCM enhances the effect of stem cell therapy by improving the hostile microenvironment and promoting the migration and survival of stem cells. Guanxin Danshen (GXDS) formulation is one of the main prescriptions for clinical treatment of ischemic heart diseases in China. The purpose of this study was to evaluate the effects of GXDS formulation administration combined with MSCs transplantation on cardiac function improvement, apoptosis, angiogenesis and survival of transplanted cells in an acute model of acute myocardial infarction (MI). After being labeled with GFP, MSCs were transplanted via intravenous injection. Meanwhile, GXDS dripping pills were given by intragastric administration for 4 weeks from 2 days before MI. Echocardiography showed moderate improvement in cardiac function after administration of GXDS formulation or intravenous transplantation of MSCs. However, GXDS formulation combined with MSCs transplantation significantly improved cardiac function after MI. The myocardial infarct size in rats treated with MSCs was similar to that in rats treated with GXDS formulation. However, GXDS formulation combined with MSCs transplantation significantly reduced infarction area. In addition, GXDS formulation combined with MSCs transplantation not only decreased cell apoptosis according to the TUNEL staining, but also enhanced angiogenesis in the peri-infarction and infarction area. Interestingly, the use of GXDS formulation increased the number of injected MSCs in the infarct area. Furthermore, GXDS formulation combined with MSCs transplantation increased SDF-1 levels in the infarcted area, but did not affect the expression of YAP. Our study provided a more feasible and accessible strategy to enhance the migration of stem cells after intravenous injection by oral administration of GXDS formulation. The combination of GXDS formulation and stem cell therapy has practical significance and application prospects in the treatment of ischemic cardiomyopathy such as MI.
Collapse
Affiliation(s)
- Xiao-Jing Han
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Han Li
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | | | - Zhi-Rong Luo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qiang-Li Wang
- Department of Histoembryology, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Fang-Fang Mou
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hai-Dong Guo
- Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
23
|
Xin-Ji-Er-Kang Alleviates Myocardial Infarction-Induced Cardiovascular Remodeling in Rats by Inhibiting Endothelial Dysfunction. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4794082. [PMID: 31341899 PMCID: PMC6614977 DOI: 10.1155/2019/4794082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/29/2019] [Accepted: 05/26/2019] [Indexed: 12/17/2022]
Abstract
The present study was designed to elucidate the beneficial effects of XJEK on myocardial infarction (MI) in rats, especially through the amelioration of endothelial dysfunction (ED). 136 Sprague-Dawley rats were randomized into 13 groups: control group for 0wk (n = 8); sham groups for 2, 4, and 6 weeks (wk); MI groups for 2, 4, and 6 wk; MI+XJEK groups for 2, 4, and 6w k; MI+Fosinopril groups for 2, 4, and 6 wk (n = 8~10). In addition, 8 rats were treated for Evans blue staining and Tetrazolium chloride (TTC) staining to determine the infarct size. Cardiac function, ECG, and cardiac morphological changes were examined. Colorimetric analysis was employed to detect nitric oxide (NO), and enzyme-linked immunosorbent assay (ELISA) was applied to determine N-terminal probrain natriuretic peptide (NT-ProBNP), endothelin-1 (ET-1), angiotensin II (Ang II), asymmetric dimethylarginine (ADMA), tetrahydrobiopterin (BH4), and endothelial NO synthase (eNOS) content. The total eNOS and eNOS dimer/(dimer+monomer) ratios in cardiac tissues were detected by Western blot. We found that administration of XJEK markedly ameliorated cardiovascular remodeling (CR), which was manifested by decreased HW/BW ratio, CSA, and less collagen deposition after MI. XJEK administration also improved cardiac function by significant inhibition of the increased hemodynamic parameters in the early stage and by suppression of the decreased hemodynamic parameters later on. XJEK also continuously suppressed the increased NT-ProBNP content in the serum of MI rats. XJEK improved ED with stimulated eNOS activities, as well as upregulated NO levels, BH4 content, and eNOS dimer/(dimer+monomer) ratio in the cardiac tissues. XJEK downregulated ET-1, Ang II, and ADMA content obviously compared to sham group. In conclusion, XJEK may exert the protective effects on MI rats and could continuously ameliorate ED and reverse CR with the progression of MI over time.
Collapse
|
24
|
Li Y, Li Q, Zhang O, Guan X, Xue Y, Li S, Zhuang X, Zhou B, Miao G. miR-202-5p protects rat against myocardial ischemia reperfusion injury by downregulating the expression of Trpv2 to attenuate the Ca 2+ overload in cardiomyocytes. J Cell Biochem 2019; 120:13680-13693. [PMID: 31062423 DOI: 10.1002/jcb.28641] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/29/2019] [Accepted: 02/04/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND This study was aimed to unveil micro RNA (miRNA) expression profiles in myocardial ischemia-reperfusion (MI/R) rats and explore whether and how dysregulated miRNAs were involved in the initiation and progression of MI/R in a calcium-dependent manner. METHOD AND RESULTS Rat model of MI/R was established and cardiomyocytes isolated from neonatal rats cardiomyocytes were induced. Both miRNA and messenger RNA expression profiles were analyzed by Microarray. Quantitative reverse-transcription polymerase chain reaction, immunoblotting, bioinformatics analysis, dual-luciferase reporter gene assay, hematoxylin and eosin, Evans blue, and triphenyl tetrazolium chloride were also used in this study. Serum concentrations of myocardial enzymes (phosphocreatine kinase [CK], creatine kinase [CK-MB], lactate dehydrogenase [LDH]), cardiomyocytes loadage of Ca2+ , as well as the expression level of inositol 1,4,5-trisphosphate receptors (IP3R) and sarcoplasmic reticulum Ca2+ -ATPase 2a (SERCA2a) were measured, respectively. Effects of upregulation or downregulation of miR-202-5p or Trpv2 on these indicators were investigated in vivo and in vitro. In MI/R rats and hypoxia/reoxygenation-induced NCMs, miR-202-5p was downregulated, while Trpv2 was upregulated. Trpv2 was a promising target of miR-202-5p and negatively regulated by miR-202-5p. Upregulation of miR-202-5p or downregulation of Trpv2 significantly reduced the serum concentration of myocardial enzymes, as well as cardiomyocyte-produced reactive oxygen species, but inhibition of miR-202-5p or overexpression of Trpv2 brought the worsening situation for these indicators. Besides, upregulation of miR-202-5p upregulation or downregulation of Trpv2 also inhibited Ca2+ overload in cardiomyocytes, accompanied with the increase of SERCA2a and suppression of IP3R. The reduced damage degree and infarct size in myocardial tissue were contrarily worsened by miR-202-5p inhibitor. CONCLUSION Overexpression of miR-202-5p or downregulation of its downstream Trpv2 presented the cardioprotective effects to MI/R rats.
Collapse
Affiliation(s)
- Yanbing Li
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiang Li
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Ou Zhang
- Department of Cardiology, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China
| | - Xiaonan Guan
- Department of Cardiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yajun Xue
- Department of Cardiology, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China
| | - Siyuan Li
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Xianjing Zhuang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Boda Zhou
- Department of Cardiology, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China
| | - Guobin Miao
- Department of Cardiology, Beijing Tsinghua Chang Gung Hospital, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Pretreatment with Total Flavonoid Extract from Dracocephalum Moldavica L. Attenuates Ischemia Reperfusion-induced Apoptosis. Sci Rep 2018; 8:17491. [PMID: 30504832 PMCID: PMC6269513 DOI: 10.1038/s41598-018-35726-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/08/2018] [Indexed: 02/08/2023] Open
Abstract
We previously demonstrated the cardio-protection mediated by the total flavonoid extracted from Dracocephalum moldavica L. (TFDM) following myocardial ischemia reperfusion injury (MIRI). The present study assessed the presence and mechanism of TFDM-related cardio-protection on MIRI-induced apoptosis in vivo. Male Sprague-Dawley rats experienced 45-min ischemia with 12 h of reperfusion. Rats pretreated with TFDM (3, 10 or 30 mg/kg/day) were compared with Sham (no MIRI and no TFDM), MIRI (no TFDM), and Positive (trapidil tablets, 13.5 mg/kg/day) groups. In MIRI-treated rats, high dose-TFDM (H-TFDM) pre-treatment with apparently reduced release of LDH, CK-MB and MDA, enhanced the concentration of SOD in plasma, and greatly reduced the infarct size, apoptotic index and mitochondrial injury. H-TFDM pretreatment markedly promoted the phosphorylation of PI3K, Akt, GSK-3β and ERK1/2 in comparison with the MIRI model group. Western blot analysis after reperfusion also showed that H-TFDM decreased release of Bax, cleaved caspase-3, caspase-7 and caspase-9, and increased expression of Bcl-2 as evident by the higher Bcl-2/Bax ratio. TFDM cardio-protection was influenced by LY294002 (PI3K inhibitor) and PD98059 (ERK1/2 inhibitor). Taken together, these results provide convincing evidence of the benefit of TFDM pretreatment due to inhibited myocardial apoptosis as mediated by the PI3K/Akt/GSK-3β and ERK1/2 signaling pathways.
Collapse
|
26
|
Artesunate alleviates liver fibrosis by regulating ferroptosis signaling pathway. Biomed Pharmacother 2018; 109:2043-2053. [PMID: 30551460 DOI: 10.1016/j.biopha.2018.11.030] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a progression of chronic liver disease, which lacks effective therapies in the world. Attractively, more and more evidences show that natural products are safe and effective in the prevention and treatment of hepatic fibrosis. Artesunate, a water-soluble hemisuccinate derivative of artemisinin, exerts various pharmacological activities such as anti-inflammatory, anti-tumor and immunomodulating abilities. However, the effects of artesunate on hepatic fibrosis are little-known. Here our study was performed to investigate the effect of artesunate on carbon tetrachloride (CCl4)-induced mouse liver fibrosis and elucidate whether artesunate could alleviate liver fibrosis by regulating ferritinophagy- mediated ferroptosis in hepatic stellate cells (HSCs). Firstly, our results demonstrated that artesunate treatment could induce activated HSC ferroptosis in fibrotic livers. Moreover, primary HSCs isolated from different animal groups were cultured to detect biomarkers of ferroptosis including iron, lipid peroxidation, glutathione (GSH) and prostaglandin endoperoxide synthase 2 (ptgs2) levels. The results revealed that artesunate remarkably promoted ferroptosis of activated HSCs. Furthermore, consistent with the experimental results in vivo, the data in vitro still indicated that artesunate treatment markedly induced ferroptosis in activated HSCs, which mainly embodied as declined cell vitality, increased cell death rate, accumulated iron, elevated lipid peroxides and reduced antioxidant capacity. Conversely, inhibition of ferroptosis by deferoxamine (DFO) completely abolished artesunate-induced anti-fibrosis effect. Surprisingly, artesunate also evidently triggered ferritinophagy accompanied by up-regulation of LC3 (microtubule-associated protein light chain 3), Atg3, Atg5, Atg6/beclin1, Atg12 (autophagy related genes) and down-regulation of p62, FTH1 (ferritin heavy chain), NCOA4 (nuclear receptor co-activator 4) in activated HSCs. Nevertheless, depletion of ferritinophagy by specific inhibitor lysosomal lumen alkalizer-chloroquine (CQ) inhibited artesunate-induced ferroptosis and anti-fibrosis function. These results suggested that ferritinophagy-mediated HSC ferroptosis was responsible for artesunate-induced anti-fibrosis efficacy, which provided new clues for further pharmacological study of artesunate.
Collapse
|
27
|
Baldissera MD, Souza CF, Baldisserotto B. Melaleuca alternifolia essential oil prevents bioenergetics dysfunction in spleen of silver catfish naturally infected with Ichthyophthirius multifiliis. Microb Pathog 2018; 123:47-51. [DOI: 10.1016/j.micpath.2018.06.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/25/2018] [Accepted: 06/25/2018] [Indexed: 01/30/2023]
|
28
|
Yang S, Li H, Chen L. MicroRNA-140 attenuates myocardial ischemia-reperfusion injury through suppressing mitochondria-mediated apoptosis by targeting YES1. J Cell Biochem 2018; 120:3813-3821. [PMID: 30259997 DOI: 10.1002/jcb.27663] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/21/2018] [Indexed: 12/21/2022]
Abstract
Myocardial ischemia-reperfusion (I/R) injury is thought to have its detrimental role in coronary heart disease (CHD), which is considered as the foremost cause of death all over the world. However, molecular mechanism in the progression of myocardial I/R injury is still unclear. The goal of this study was to investigate the expression and function of microRNA-140 (miR-140) in the process of myocardial I/R injury. The miR-140 expression level was analyzed in the myocardium with I/R injury and control myocardium using quantitative real-time polymerase chain reaction. Then the relation between the level of miR-140 and YES proto-oncogene 1 (YES1) was also investigated via luciferase reporter assay. Assessment of myocardial infarct size measurement of serum myocardial enzymes and electron microscopy analysis were used for analyzing the effect of miR-140 on myocardial I/R injury. We also used Western blot analysis to examine the expression levels of the mitochondrial fission-related proteins, Drp1 and Fis1. miR-140 is downregulated, and YES1 is upregulated after myocardial I/R injury. Overexpression of miR-140 could reduce the increase related to myocardial I/R injury in infarct size and myocardial enzymes, and it also could inhibit the expression of proteins related to mitochondrial morphology and myocardial I/R-induced mitochondrial apoptosis by targeting YES1. Taken together, these findings may provide a novel insight into the molecular mechanism of miR-140 and YES1 in the progression of myocardial I/R injury. MiR-140 might become a promising therapeutic target for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Shuguo Yang
- Department of Cardiology, Linyi Central Hospital, Linyi, Shandong, China
| | - Haide Li
- Department of Cardiology, Linyi Central Hospital, Linyi, Shandong, China
| | - Lianghua Chen
- Department of Cardiology, Shandong Provincial Hospital, Jinan, Shandong, China
| |
Collapse
|
29
|
Ma M, Hui J, Zhang QY, Zhu Y, He Y, Liu XJ. Long non-coding RNA nuclear-enriched abundant transcript 1 inhibition blunts myocardial ischemia reperfusion injury via autophagic flux arrest and apoptosis in streptozotocin-induced diabetic rats. Atherosclerosis 2018; 277:113-122. [PMID: 30205319 DOI: 10.1016/j.atherosclerosis.2018.08.031] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 07/26/2018] [Accepted: 08/24/2018] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS This study aimed to investigate the effects of long non-coding RNA (lncRNA)-nuclear-enriched abundant transcript (Neat1) on myocardial ischemia reperfusion injury in diabetic rats ex vivo and in vivo. METHODS Screening for LncRNA Neat1 expression was performed in rat myocardial tissues using microarray analysis and verified by qRT-PCR. Cell viability of rat cardiomyocytes was analyzed by MTT assay. Levels of autophagy-related proteins Atg7, Atg5, LC3-II/LC3-I and p62 were determined by Western blot assay. Left ventricular end diastolic diameter (LVEDD), left ventricular end systolic diameter (LVESD), left ventricular ejection fraction (LVEF) and fractioning shortening were obtained by transthoracic echocardiography. Left ventricular end systolic pressure (LVESP), left ventricular end diastolic pressure (LVEDP), maximum rate of increase or decrease of left ventricular pressure (±dp/dtmax) and heart rate were obtained by computer algorithms and an interactive videographics programme. Myocardial infarct size was determined by Evans blue and triphenyltetrazolium chloride (TTC) staining. Myocardial apoptotic index was analyzed by TUNEL assay and immunohistochemical staining. Autophagic flux was examined by evaluating fluorescent LC3 puncta. RESULTS Neat1 was highly expressed in ischemia reperfusion-treated diabetic rat myocardial tissues. Overexpression of Neat1 promoted the production of lactate dehydrogenase, inhibited superoxide dismutase content and cardiomyocyte viability. Neat1 overexpression also promoted the production of serum myocardial enzymes, including creatine kinase and creatine kinase-MB, and increased infarct size. By promoting myocardial apoptosis and autophagy, Neat1 aggravated myocardial ischemia reperfusion (I/R) injury in diabetic rats. Neat1 promoted cardiomyocyte autophagy by up-regulating Foxo1 expression to increase hypoxia-reoxygenation injury. CONCLUSIONS I/R treatment caused more injuries in diabetic rats compared with normal rats. Elevated Neat1 expression aggravates myocardial ischemia reperfusion injury via activation of apoptosis and autophagy in diabetic rats. Foxo1 is one of the molecular mechanisms underlying Neat1-induced autophagy.
Collapse
Affiliation(s)
- Min Ma
- Department of Cardiology, the Sixth People's Hospital of Chengdu, Chengdu 610051, Sichuan, China; Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jie Hui
- Department of Cardiology, the First Affiliated Hospital of Soochow University, Suzhou 215006, Jiangsu, China
| | - Qi-Yin Zhang
- Department of Cardiology, Changshu NO.1 People's Hospital, Suzhou 215500, Jiangsu, China
| | - Ye Zhu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yong He
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xiao-Jing Liu
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Laboratory of Cardiovascular Diseases, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
30
|
Lin R, Duan J, Mu F, Bian H, Zhao M, Zhou M, Li Y, Wen A, Yang Y, Xi M. Cardioprotective effects and underlying mechanism of Radix Salvia miltiorrhiza and Lignum Dalbergia odorifera in a pig chronic myocardial ischemia model. Int J Mol Med 2018; 42:2628-2640. [PMID: 30226574 PMCID: PMC6192790 DOI: 10.3892/ijmm.2018.3844] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/09/2018] [Indexed: 12/24/2022] Open
Abstract
Traditional Chinese medicines, including Radix Salvia miltiorrhiza (SM) and Lignum Dalbergia odorifera (DO) extracts, have historically been used to treat myocardial ischemia and other cardiovascular diseases. The volatile oil of DO (DOO) is one of the main components of DO. The aim of the present study was to assess the cardioprotective effects and possible underlying mechanisms of SM-DOO in pigs with ameroid constriction-induced chronic myocardial ischemia. An ameroid constrictor was placed around the left anterior descending coronary artery of pigs to induce chronic myocardial ischemia. At weeks 2, 6 and 8, myocardial injury markers and blood gas levels were detected. At week 8, coronary angiography, echocardiography and hemodynamics analysis were performed to evaluate myocardial function. Following sacrifice, myocardial tissue was collected and subjected to morphological, histopathological and apoptosis assays. Western blotting was used to detect the protein expression of Bcl-2 associated X (Bax), Bcl-2, Akt, phosphorylated (p)-Akt, glycogen synthase kinase (GSK)-3β and p-GSK-3β. It was revealed that SM-DOO treatment following chronic myocardial ischemia significantly downregulated the expression of myocardial injury markers, ameliorated myocardial oxygen consumption, increased collateralization, reduced regional cardiac dysfunction and limited the extent of myocardial damage. Furthermore, the results of an apoptosis assay revealed that the apoptosis rate was decreased, the expression of Bax decreased and Bcl-2 increased, and the ratio of Bcl-2/Bax was increased. Further experiments indicated that treatment with SM-DOO increased the phosphorylation of Akt and GSK-3β. These findings suggest that SM-DOO treatment ameliorates myocardial injury in a chronic myocardial ischemia model, and that the underlying mechanisms responsible may be associated with the activation of the Akt/GSK-3β signal pathway. Thus, experimental evidence that SM-DOO may be an effective drug for the prevention and treatment of chronic myocardial ischemia in clinical applications has been provided.
Collapse
Affiliation(s)
- Rui Lin
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Jialin Duan
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Fei Mu
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Haixu Bian
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Meina Zhao
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Min Zhou
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yao Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Yong Yang
- Department of Pharmacy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, P.R. China
| | - Miaomiao Xi
- Department of Pharmacy, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| |
Collapse
|
31
|
Lim C, Lim S, Lee B, Kim B, Cho S. Effect of methanol extract of Salviae miltiorrhizae Radix in high-fat diet-induced hyperlipidemic mice. Chin Med 2017; 12:29. [PMID: 29046711 PMCID: PMC5640945 DOI: 10.1186/s13020-017-0150-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/26/2017] [Indexed: 12/31/2022] Open
Abstract
Background The dried root of Salvia miltiorrhiza, Salviae miltiorrhizae Radix (SR), is one of the most popular medicinal herbs in Asian countries such as China and Korea. In Asian traditional medicine, SR is considered to have a bitter flavor, be slightly cold in nature, and exert therapeutic actions in the heart and liver meridians. Thus, SR has been used to control symptoms related to cardiovascular diseases. Hyperlipidemia is recognized as the main cause of cerebrovascular and heart diseases; consequently, therapeutic strategies for hyperlipidemia have been widely studied. In this study, the effects and molecular targets of methanol extract of SR (SRme) in hyperlipidemic mice were investigated. Methods High-fat diet was fed to mice to induce hyperlipidemia, and measurement of blood cholesterol and triglycerides were conducted to evaluate the effect of SRme on hyperlipidemic mice, and gene expression in mice liver was analyzed to identify key molecules which could be potential targets for developing anti-hyperlipidemic herbal medicines. Results There was no significant effect on the body weight gain of hyperlipidemic mice, but the triglyceride content in blood was significantly reduced by the administration of SRme to hyperlipidemic mice. Proteins such as minichromosome maintenance (Mcm) family which play a key role in DNA replication were identified as molecular targets in the amelioration of hyperlipidemia. Conclusions SRme ameliorated hyperlipidemia in high-fat diet fed mice by inhibiting increase of blood serum level of triglycerides. And several proteins such as Mcm proteins were deduced to be molecular targets in treating hyperlipidemia. Electronic supplementary material The online version of this article (doi:10.1186/s13020-017-0150-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiyeon Lim
- College of Medicine, Dongguk University, Ilsandong-gu, Gyeonggi-Do 10326 Republic of Korea
| | - Sehyun Lim
- School of Public Health, Far East University, Chungbuk, 27601 Republic of Korea
| | - Byoungho Lee
- Kyunghee Naseul Korean Medicine Clinic, Bucheon-si, Gyeonggi-do 14548 Republic of Korea
| | - Buyeo Kim
- Department of Medical Research, Korea Institute of Oriental Medicine, Daejeon, 34054 Republic of Korea
| | - Suin Cho
- School of Korean Medicine, Yangsan Campus of Pusan National University, Yangsan-si, 50612 Republic of Korea
| |
Collapse
|