1
|
Shi Y, Shi Y, Jie R, He J, Luo Z, Li J. Vitamin D: The crucial neuroprotective factor for nerve cells. Neuroscience 2024; 560:272-285. [PMID: 39343160 DOI: 10.1016/j.neuroscience.2024.09.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/11/2024] [Accepted: 09/21/2024] [Indexed: 10/01/2024]
Abstract
Vitamin D is well known for its role in regulating the absorption and utilization of calcium and phosphorus as well as bone formation, and a growing number of studies have shown that vitamin D also has important roles in the nervous system, such as maintaining neurological homeostasis and protecting normal brain function, and that neurons and glial cells may be the targets of these effects. Most reviews of vitamin D's effects on the nervous system have focused on its overall effects, without distinguishing the contributors to these effects. In this review, we mainly focus on the cells of the central nervous system, summarizing the effects of vitamin D on them and the related pathways. With this review, we hope to elucidate the role of vitamin D in the nervous system at the cellular level and provide new insights into the prevention and treatment of neurodegenerative diseases in the direction of neuroprotection, myelin regeneration, and so on.
Collapse
Affiliation(s)
- Yuxin Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Yuchen Shi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Rao Jie
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jiawei He
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China
| | - Zhaohui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Clinical Research Center for Epileptic Disease of Hunan Province, Central South University, Changsha 410008, Hunan, PR China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| | - Jing Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; Research Center for Neuroimmune and Neuromuscular Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008 China.
| |
Collapse
|
2
|
Tamam Y, Yokuş B, Tamam C, Yüceer H, Karahan S, Em B, Tamam ŞB, Tüzün E. The Effect of Lidocaine on the Experimental Model of Streptozotocin-Induced Alzheimer's Disease. Noro Psikiyatr Ars 2023; 60:68-72. [PMID: 36911558 PMCID: PMC9999227 DOI: 10.29399/npa.28112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/10/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Alzheimer's disease (AD) is a neurodegenerative disease caused by the accumulation of amyloid plaques in the cerebral cortex and hippocampus. In this study, the effects of local anesthetic lidocaine on neurodegeneration markers and memory were investigated for the first time in streptozotocin-induced rat AD model. Methods Streptozotocin (STZ) was administered intracerebroventricularly (ICV) into Wistar rats to develop AD model. For lidocaine group (n=14), lidocaine (5 mg/kg) was administered intraperitoneally (IP) in addition to STZ injection. Control group animals (n=9) were treated with saline for 21 days. Morris Water Maze (MWM) test was performed to evaluate memory after the injections were completed. Also, the serum levels of TAR DNA-binding protein-43 (TDP-43), amyloid precursor protein (APP), β-secretase 1, nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), response element binding protein (CREB), c-FOS were measured using ELISA test and compared between groups. Results Lidocaine group animals showed lower escape latency and time in quadrant scores in MWM inferring better memory performance. Furthermore, lidocaine administration caused a significant decline in TDP-43 levels. However, the expression of APP and β-secretase were significantly higher in AD and lidocaine groups compared to control group. Moreover, lidocaine group markedly had higher serum NGF, BDNF, CREB, and c-FOS levels compared to those in the AD group. Conclusion In addition to neuroprotective effects in STZ-induced AD model, Lidocaine also appears to improve memory. This effect might be associated with increased levels of several growth factors and associated intracellular molecules. The therapeutic role of lidocaine in the pathophysiology of AD should be studied in the future.
Collapse
Affiliation(s)
- Yusuf Tamam
- Dicle University, Faculy of Medicine, Department of Neurology, Diyarbakır, Turkey
| | - Beran Yokuş
- Dicle University, Faculy of Veterinary Medicine, Department of Biochemistry, Diyarbakır, Turkey
| | - Cüneyt Tamam
- Toros University, Faculty of Health Sciences, Mersin, Turkey
| | - Hande Yüceer
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, İstanbul, Turkey
| | - Selim Karahan
- Dicle University, Faculy of Veterinary Medicine, Department of Laboratuvary Animals, Diyarbakır, Turkey
| | - Bernan Em
- University of Health Sciences, Diyarbakır Gazi Yaşargil Training and Research Hospital, Diyarbakır, Turkey
| | | | - Erdem Tüzün
- İstanbul University, Aziz Sancar Institute of Experimental Medicine, Department of Neuroscience, İstanbul, Turkey
| |
Collapse
|
3
|
Li B, Xu H, He C, Zou W, Tu Y. Lidocaine prevents breast cancer growth by targeting neuronatin to inhibit nerve fibers formation. J Toxicol Sci 2021; 46:329-339. [PMID: 34193770 DOI: 10.2131/jts.46.329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lidocaine has been shown to inhibit the invasion and metastasis of breast cancer, but the mechanism still remains unclear. This study explored the relationship between lidocaine and circulating seeding of breast cancer cells from the perspective of nerve fiber formation. The cell lines MDA-MB-231 and 4T1 were subcutaneously inoculated in mice to simulate the tumor self-seeding by circulating cancer cells. Lidocaine was used to treat these mice and tumor growth was observed. Silver staining was performed to observe the distribution of nerve fibers in tumor-bearing tissues, and immunohistochemical analysis was performed to observe the expression levels of nerve-related proteins. The results showed that lidocaine treatment effectively inhibited tumor growth and nerve fiber formation, and down-regulated the expression levels of protein gene product 9.5, neurofilament, nerve growth factor (NGF), and neuronatin (Nnat). Overexpression NGF and Nnat both could reverse the therapeutic effects of lidocaine. These results suggest that the effect of lidocaine on inhibiting breast cancer invasion and metastasis may be achieved by targeting Nnat, regulating the production of NGFs in cancer cells, and subsequently inhibiting the formation of nerve fibers.
Collapse
Affiliation(s)
- Bingda Li
- Department of Anesthesiology, Jiangxi Cancer Hospital of Nanchang University, China
| | - Hao Xu
- Department of Pediatrics, Wuhan NO.1 Hospital, China
| | - Chongwu He
- Department of Breast Surgery, Jiangxi Cancer Hospital of Nanchang University, China
| | - Wenxiong Zou
- Department of Emergency, Ji'an Central People's Hospital, China
| | - Yun Tu
- Department of Oncology, Jiangxi Cancer Hospital of Nanchang University, China
| |
Collapse
|
4
|
Ding XD, Cao YY, Li L, Zhao GY. Dexmedetomidine Reduces the Lidocaine-Induced Neurotoxicity by Inhibiting Inflammasome Activation and Reducing Pyroptosis in Rats. Biol Pharm Bull 2021; 44:902-909. [PMID: 34193687 DOI: 10.1248/bpb.b20-00482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Local anesthetic toxicity is closely related to neuronal death and activation of the inflammatory response. Dexmedetomidine (Dex) is an adrenergic α2 receptor agonist that can reduce the neurotoxicity induced by lidocaine. It also has anti-inflammatory effects. However, the mechanism underlying the neuroprotective effects of Dex against lidocaine-induced toxicity remains to be defined. We hypothesized that Dex exerts its neural protective effect through inhibiting inflammasome activation and through anti-pyroptosis effects against local anesthetic-induced nerve injury. In a rat model of lidocaine-induced spinal cord injury, we studied the protective effect of Dex on lidocaine-induced changes in spinal cord function, inflammasome formation and pyroptosis, pro-inflammatory cytokine expression, and protein kinase C (PKC)-δ phosphorylation. Dex reduced lidocaine-induced neurotoxicity and inhibited PKC-δ phosphorylation in the spinal cord of rats. Furthermore, Dex inhibited pyroptosis and inflammasome formation (caspase-1, NLRP3, and apoptosis-associated speck-like protein (ASC)). Finally, Dex attenuated interleukin (IL)-1β and IL-18 expression, as well as microglia response. In conclusion, Dex can reduce the severity of lidocaine-induced spinal cord injury in rats by inhibiting priming and inflammasome activation and reducing pyroptosis via PKC-δ phosphorylation.
Collapse
Affiliation(s)
- Xu-Dong Ding
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| | - Yan-Yan Cao
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| | - Lu Li
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| | - Guang-Yi Zhao
- Department of Anesthesiology, Shengjing Hospital of China Medical University
| |
Collapse
|
5
|
Eftimiadi G, Soligo M, Manni L, Di Giuda D, Calcagni ML, Chiaretti A. Topical delivery of nerve growth factor for treatment of ocular and brain disorders. Neural Regen Res 2021; 16:1740-1750. [PMID: 33510063 PMCID: PMC8328750 DOI: 10.4103/1673-5374.306062] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neurotrophins are a family of proteins that support neuronal proliferation, survival, and differentiation in the central and peripheral nervous systems, and are regulators of neuronal plasticity. Nerve growth factor is one of the best-described neurotrophins and has advanced to clinical trials for treatment of ocular and brain diseases due to its trophic and regenerative properties. Prior trials over the past few decades have produced conflicting results, which have principally been ascribed to adverse effects of systemic nerve growth factor administration, together with poor penetrance of the blood-brain barrier that impairs drug delivery. Contrastingly, recent studies have revealed that topical ocular and intranasal nerve growth factor administration are safe and effective, suggesting that topical nerve growth factor delivery is a potential alternative to both systemic and invasive intracerebral delivery. The therapeutic effects of local nerve growth factor delivery have been extensively investigated for different ophthalmic diseases, including neurotrophic keratitis, glaucoma, retinitis pigmentosa, and dry eye disease. Further, promising pharmacologic effects were reported in an optic glioma model, which indicated that topically administered nerve growth factor diffused far beyond where it was topically applied. These findings support the therapeutic potential of delivering topical nerve growth factor preparations intranasally for acquired and degenerative brain disorders. Preliminary clinical findings in both traumatic and non-traumatic acquired brain injuries are encouraging, especially in pediatric patients, and clinical trials are ongoing. The present review will focus on the therapeutic effects of both ocular and intranasal nerve growth factor delivery for diseases of the brain and eye.
Collapse
Affiliation(s)
- Gemma Eftimiadi
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology, Consiglio Nazionale delle Ricerche (CNR), Rome, Italy
| | - Daniela Di Giuda
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Maria Lucia Calcagni
- Institute of Nuclear Medicine, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| | - Antonio Chiaretti
- Institute of Pediatrics, Fondazione Policlinico Universitario Agostino Gemelli, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy
| |
Collapse
|
6
|
Zhang Z, Wang J, Song Z, Wang Y, Cheng Z, Guo Q, Wang E, Jian Y, Wu L. Downregulation of microRNA-199a-5p alleviated lidocaine-induced sensory dysfunction and spinal cord myelin lesions in a rat model. Toxicol Lett 2021; 336:1-10. [PMID: 33166664 DOI: 10.1016/j.toxlet.2020.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 01/17/2023]
Abstract
Lidocaine induces neurotoxicity in the spinal cord, but the underlying mechanisms remain unclear. In this study, we evaluated the effects of miR-199a-5p on 10 % lidocaine neurotoxicity. Increased expression of miR-199a-5p in the spinal cord of rats treated with 10 % lidocaine was assessed by qRT-PCR. Furthermore, after miR-199a-5p antagomir administration, the sensory dysfunction and myelin sheath lesions (evaluated by semithin sections stained with toluidine blue, electron microscopy, g-ratios and myelin thickness) induced by 10 % lidocaine were alleviated. Myelin regulatory factor (MYRF), a key molecule of myelin sheath development, was predicted to be a target gene of miR-199a-5p by the TargetScan and miRBase databases. MYRF and its downstream factors myelin basic protein (MBP), proteolipid protein (PLP) and myelin oligodendrocyte glycoprotein (MOG) were significantly decreased after intrathecal 10 % lidocaine administration. Moreover, these changes were reversed after miR-199a-5p antagomir administration. FISH-immunofluorescence showed coexpression of miR-199a-5p and MYRF in the spinal cord white matter of rats. A luciferase reporter assay further demonstrated the functional association between miR-199a-5p and MYRF. Overall, miR-199a-5p upregulation is involved in 10 % lidocaine-induced spinal cord toxicity through regulation of MYRF. Therefore, downregulating miR-199a-5p expression may be a potential strategy to ameliorate spinal cord neurotoxicity induced by 10 % lidocaine.
Collapse
Affiliation(s)
- Zhong Zhang
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - Jian Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - Zongbin Song
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - Yunjiao Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - Zhigang Cheng
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - E Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China
| | - Yanping Jian
- Department of Anesthesiology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, 410008, Changsha City, Hunan Province, China.
| | - Lei Wu
- Department of Anesthesiology, Hunan Children's Hospital, No. 86 Ziyuan Road, 410007, Changsha City, Hunan Province, China.
| |
Collapse
|
7
|
Sun Y, Zhu X, Hou J, Hou K, Jin W. Effects of mouse nerve growth factor in treating cerebral injury in acute period caused by cerebral hemorrhage. Saudi J Biol Sci 2020; 27:2701-2705. [PMID: 32994729 PMCID: PMC7499391 DOI: 10.1016/j.sjbs.2020.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/22/2020] [Accepted: 06/09/2020] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To explore the clinical effects of mouse Nerve Growth Factor (NGF) in treating cerebral injury in acute period caused by cerebral hemorrhage, observe its influences on Natriuretic Peptide (BNP) and NF-kB Level and evaluate its safety and efficiency. METHODS 96 cases with acute cerebral hemorrhage from January 2016 to January 2017 in our hospital were recruited as this study, they were randomly divided into the control group and the observation group, each 48 cases. The observation group were given NGF on the treatment of the control group. NIHSS, BI score, adverse reactions records were compared in two groups before and after treatment. The clinical effective rate were evaluated. Then BNP and NF-KB Level of patients in two groups before and after treatment were detected by using ELISA. RESULTS There were no significant differences in two groups before treatment with respect to NIHSS and BI score (P > 0.05). After treatment, NIHSS score in the observation group significantly lower than the control group. BI score in the observation group significantly higher than the control group, differences had obvious significance (P < 0.05). The total effective rate in the observation group was 93.75%. The control group was 70.83%. Clinical effective rate of patients in the observation group significantly better than the control group (P < 0.05). There were no significant differences of patients in two groups before treatment with respect to BNP and NF-kB Level (P > 0.05). BNP and NF-kB Level decreased with different levels in two groups after treatment, and the observation group lower than the control group at the same time (P < 0.05). CONCLUSION NGF is benefit for relieving neurological function injury of patients with acute cerebral hemorrhage in acute period, improving living ability of patients. Patients have good tolerance and no adverse reactions. NGF can lower BNP and NF-kB Level. It has a certain function of inhibiting inflammatory injury caused by cerebral hemorrhage, thus protecting neuron. It is worthy of clinical promotion.
Collapse
Affiliation(s)
- Yang Sun
- Department of Neurosurgery, No.1 Hospital Branch 2 of Jilin University, Jilin, Changchun, China
| | - Xiaobo Zhu
- Department of Neurosurgery, No.1 Hospital Branch 2 of Jilin University, Jilin, Changchun, China
| | - Junling Hou
- Department of Neurosurgery, No.1 Hospital Branch 2 of Jilin University, Jilin, Changchun, China
| | - Kun Hou
- Department of Neurosurgery, No.1 Hospital Branch 2 of Jilin University, Jilin, Changchun, China
| | - Weiwei Jin
- Department of Neurosurgery, No.1 Hospital Branch 2 of Jilin University, Jilin, Changchun, China
| |
Collapse
|
8
|
Bai M, Wang Y, Han R, Xu L, Huang M, Zhao J, Lin Y, Song S, Chen Y. Intermittent caloric restriction with a modified fasting-mimicking diet ameliorates autoimmunity and promotes recovery in a mouse model of multiple sclerosis. J Nutr Biochem 2020; 87:108493. [PMID: 32920091 DOI: 10.1016/j.jnutbio.2020.108493] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
Dietary interventions such as fasting have been proved to be effective in the prevention of metabolic and autoimmune diseases as well as aging-related conditions. The complicated interaction between nutrition and immunity has drawn wide attention in recent years. In this study, we investigated the therapeutic effect of intermittent caloric restriction on autoimmune encephalomyelitis (EAE), a model of multiple sclerosis, in mice. EAE was induced by immunization of C57BL/6 mice with myelin oligodendrocyte glycoprotein 35-55 peptide. After the EAE symptoms became obvious at the 4th week post-immunization, the mice were administered with a modified fasting-mimicking diet (FMD) at 1/3 cal of control for 3 days, followed by ad libitum with normal chow for 4 days. A total of two cycles of FMD was applied. Compared with the mice without receiving caloric restriction, the mice using FMD had significant decreases in EAE severity, immune cell infiltration in spinal cord and CNS demyelination. FMD administration also reversed EAE-mediated CNS accumulation of total CD4+ T cells and in particular, IFN-γ-producing CD4+ T cells. Moreover, FMD application elevated the cell proliferation rate in CNS and enhanced expression of brain-derived neurotrophic factor (BDNF) and remyelination markers. In conclusion, our results indicate that intermittent caloric restriction using the modified FMD was effective in the treatment of EAE through ameliorating inflammatory response and promoting recovery of the damaged tissue.
Collapse
Affiliation(s)
- Meijuan Bai
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Yan Wang
- CAS Key Laboratory of Tumor and Microenvironment, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Ruomei Han
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031
| | - Lijiao Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031
| | - Meiqin Huang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Jingyu Zhao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Yijun Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031
| | - Shuo Song
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031
| | - Yan Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China, 200031; School of Life Sciences and Technology, Shanghai Tech University, Shanghai, China 200031.
| |
Collapse
|
9
|
Quercetin mitigates monosodium glutamate-induced excitotoxicity of the spinal cord motoneurons in aged rats via p38 MAPK inhibition. Acta Histochem 2020; 122:151554. [PMID: 32622428 DOI: 10.1016/j.acthis.2020.151554] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/19/2020] [Accepted: 04/22/2020] [Indexed: 12/18/2022]
Abstract
Various studies reported the possibility of deterioration of blood-brain barrier (BBB) integrity owing to the aging process. The current work was performed to investigate the ability of Monosodium glutamate (MSG) to cross BBB in aged rats, the damage affecting the anterior horn cells of the spinal cord due to excitotoxicity, and the mechanisms by which quercetin (Que) administration might suppress such damage. Forty male rats aged 18 months were assigned equally to 4 groups: control group, Que group (received Que, 20 mg/kg/d intraperitonealy for 10 days), MSG group (received MSG, 4.0 g/kg/d subcutaneously for 10 days), MSG + Que group (received both Que and MSG as done in the Que and MSG groups respectively). Cervical spinal cord specimens were obtained and prepared for routine histological study, immunohistochemical staining by caspase-3 and glial fibrillary acidic protein (GFAP), assessment of oxidative stress, measurement of cytokines, assessment of caspase-3 activity and GFAP levels as well as for western blotting of phosphorylated activating transcription factor 2 (ATF2pp) as an indicator for the activity of p38 mitogen-activated protein kinase (MAPK). The MSG group revealed variable degenerative and apoptotic changes in the motoneurons and neuroglia, a marked rise in the cytoplasmic caspase-3 expression in motoneurons and a significant reduction (p < 0.001) in the astrocyte surface area percentage. In addition, the spinal cord tissue exhibited a significant elevation (p < 0.001) in the levels of malondialdehyde (MDA), IL-1, IL-6, TNFα, INFɣ, caspase-3 activity and ATF2 pp expression as well as a significant reduction (p < 0.001) in SOD, IL-10 and GFAP levels compared with the control group. On combining Que with MSG, most of the degenerative changes were reversed and all the impaired parameters were nearly normalized except for IL-6 and GFAP levels which were still significantly (p < 0.05) different from those of the control group. Our study suggests that MSG can break through the BBB of the aged rats and induce excitotoxicity dependent changes in spinal cord motoneurons. Most of these changes were reversed by Que probably via targeting the p38 MAPK-ATF2 pathway, antagonizing oxidative stress, anti-inflammatory effect, and promoting GFAP expression.
Collapse
|
10
|
Wei TH, Hsieh CL. Effect of Acupuncture on the p38 Signaling Pathway in Several Nervous System Diseases: A Systematic Review. Int J Mol Sci 2020; 21:E4693. [PMID: 32630156 PMCID: PMC7370084 DOI: 10.3390/ijms21134693] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 12/16/2022] Open
Abstract
Acupuncture is clinically used to treat various diseases and exerts positive local and systemic effects in several nervous system diseases. Advanced molecular and clinical studies have continually attempted to decipher the mechanisms underlying these effects of acupuncture. While a growing understanding of the pathophysiology underlying several nervous system diseases shows it to be related to inflammation and impair cell regeneration after ischemic events, the relationship between the therapeutic mechanism of acupuncture and the p38 MAPK signal pathway has yet to be elucidated. This review discusses the latest advancements in the identification of the effect of acupuncture on the p38 signaling pathway in several nervous system diseases. We electronically searched databases including PubMed, Embase, and the Cochrane Library from their inception to April 2020, using the following keywords alone or in various combinations: "acupuncture", "p38 MAPK pathway", "signaling", "stress response", "inflammation", "immune", "pain", "analgesic", "cerebral ischemic injury", "epilepsy", "Alzheimer's disease", "Parkinson's disease", "dementia", "degenerative", and "homeostasis". Manual acupuncture and electroacupuncture confer positive therapeutic effects by regulating proinflammatory cytokines, ion channels, scaffold proteins, and transcription factors including TRPV1/4, Nav, BDNF, and NADMR1; consequently, p38 regulates various phenomena including cell communication, remodeling, regeneration, and gene expression. In this review article, we found the most common acupoints for the relief of nervous system disorders including GV20, GV14, ST36, ST37, and LI4. Acupuncture exhibits dual regulatory functions of activating or inhibiting different p38 MAPK pathways, contributing to an overall improvement of clinical symptoms and function in several nervous system diseases.
Collapse
Affiliation(s)
- Tzu-Hsuan Wei
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
| | - Ching-Liang Hsieh
- Department of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 40402, Taiwan
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|