1
|
Lin T, Daddi L, Tang Y, Zhou Y, Liu B, Moore MD, Liu Z. Antrodia camphorata Supplementation during Early Life Alters Gut Microbiota and Inhibits Young-Onset Intestinal Tumorigenesis in APC1638N Mice Later in Life. Nutrients 2024; 16:2408. [PMID: 39125288 PMCID: PMC11314251 DOI: 10.3390/nu16152408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Young-onset colorectal cancer is an increasing concern worldwide due to the growing prevalence of Westernized lifestyles in childhood and adolescence. Environmental factors during early life, particularly early-life nutrition, significantly contribute to the increasing incidence. Recently, there have been reports of beneficial effects, including anti-inflammation and anti-cancer, of a unique fungus (Antrodia camphorate, AC) native to Taiwan. The objective of this study is to investigate the impact of AC supplementation in early life on the development of young-onset intestinal tumorigenesis. APC1638N mice were fed with a high-fat diet (HF) at 4-12 weeks of age, which is equivalent to human childhood/adolescence, before switching to a normal maintenance diet for an additional 12 weeks up to 24 weeks of age, which is equivalent to young to middle adulthood in humans. Our results showed that the body weight in the HF groups significantly increased after 8 weeks of feeding (p < 0.05). Following a switch to a normal maintenance diet, the change in body weight persisted. AC supplementation significantly suppressed tumor incidence and multiplicity in females (p < 0.05) and reduced IGF-1 and Wnt/β-catenin signaling (p < 0.05). Moreover, it altered the gut microbiota, suppressed inflammatory responses, and created a microenvironment towards suppressing tumorigenesis later in life.
Collapse
Affiliation(s)
- Tingchun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
| | - Lauren Daddi
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (L.D.); (Y.Z.)
| | - Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
| | - Yanjiao Zhou
- Department of Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA; (L.D.); (Y.Z.)
| | - Buping Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
- School of Public Health and Management, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA 01003, USA; (T.L.); (Y.T.); (B.L.)
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
2
|
Lin TC, Soorneedi A, Guan Y, Tang Y, Shi E, Moore MD, Liu Z. Turicibacter fermentation enhances the inhibitory effects of Antrodia camphorata supplementation on tumorigenic serotonin and Wnt pathways and promotes ROS-mediated apoptosis of Caco-2 cells. Front Pharmacol 2023; 14:1203087. [PMID: 37663253 PMCID: PMC10469317 DOI: 10.3389/fphar.2023.1203087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/07/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction: Diet-induced obesity has been shown to decrease the abundance of Turicibacter, a genus known to play a role in the serotonin signaling system, which is associated with colorectal tumorigenesis, making the presence of Turicibacter potentially influential in the protection of intestinal tumorigenesis. Recently, Antrodia camphorata (AC), a medicinal fungus native to Taiwan, has emerged as a promising candidate for complementary and alternative cancer therapy. Small molecules and polysaccharides derived from AC have been reported to possess health-promoting effects, including anti-cancer properties. Methods: Bacterial culture followed with cell culture were used in this study to determine the role of Turicibacter in colorectal tumorigenesis and to explore the anti-cancer mechanism of AC with Turicibacter fermentation. Results: Turicibacter fermentation and the addition of AC polysaccharide led to a significant increase in the production of nutrients and metabolites, including α-ketoglutaric acid and lactic acid (p < 0.05). Treatment of Turicibacter fermented AC polysaccharide was more effective in inhibiting serotonin signaling-related genes, including Tph1, Htr1d, Htr2a, Htr2b, and Htr2c (p < 0.05), and Wnt-signaling related protein and downstream gene expressions, such as phospho-GSK-3β, active β-catenin, c-Myc, Ccnd1, and Axin2 (p < 0.05). Additionally, it triggered the highest generation of reactive oxygen species (ROS), which activated PI3K/Akt and MAPK/Erk signaling and resulted in cleaved caspase-3 expression. In comparison, the treatment of AC polysaccharide without Turicibacter fermentation displayed a lesser effect. Discussion: Our findings suggest that AC polysaccharide effectively suppresses the tumorigenic serotonin and Wnt-signaling pathways, and promotes ROS-mediated apoptosis in Caco-2 cells. These processes are further enhanced by Turicibacter fermentation.
Collapse
Affiliation(s)
- Ting-Chun Lin
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Anand Soorneedi
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Yingxue Guan
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Ying Tang
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
| | - Eleanor Shi
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | - Matthew D. Moore
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Zhenhua Liu
- Department of Nutrition, School of Public Health and Health Sciences, University of Massachusetts, Amherst, MA, United States
- UMass Cancer Center, University of Massachusetts Chan Medical School, Worcester, MA, United States
| |
Collapse
|
3
|
Tao Y, Chen L, Pu F, Xie Z, Tong S, Yan J. An efficient high-speed countercurrent chromatography method for preparative isolation of highly potent anti-cancer compound antroquinonol from Antrodia camphorata after experimental design optimized extraction. J Sep Sci 2021; 44:2655-2662. [PMID: 33884745 DOI: 10.1002/jssc.202100162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/06/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
To avoid irreversible stationary phase adsorption and tedious and time-consuming separation steps, high-speed countercurrent chromatography was employed for the preparative separation of anti-tumor compound antroquinonol from solid fermentation culture of Antrodia camphorata for the first time. A Box-Behnken experimental design, based on three parameters including liquid-to-solid ratio, extraction time, and extraction temperature, was applied to optimize the ultrasonic extraction procedure. The optimal extraction condition was set as follows: liquid-to-solid ratio: 49.57:1; extraction time: 55.76 min; extraction temperature was arranged as 44.21°C. Meanwhile, an optimized solvent system containing petroleum ether, ethyl acetate, methanol, and water (4:1:4:1, v/v/v/v) was selected for the preparative separation of antroquinonol at a flow rate of 2.0 mL/min. The yield of isolated antroquinonol was determined to be 6.0 mg from 0.67 g of ethyl acetate extracts. The isolated antroquinonol was elucidated by ultra-high-performance liquid chromatography-tandem mass spectrometry, and NMR spectroscopy, and by comparison with literature data. The purity of isolated antroquinonol was determined to be 97.12%. This study confirmed that high-speed countercurrent chromatography was powerful and cost-effective for the preparative separation of the high-potently anti-tumor compound antroquinonol from solid fermentation culture of A. camphorata.
Collapse
Affiliation(s)
- Yi Tao
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China.,Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Lin Chen
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Faxiang Pu
- Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Zhangfu Xie
- Zhejiang Suichang Limin Pharmaceutical Co., Lishui, Zhejiang, P. R. China
| | - Shengqiang Tong
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Jizhong Yan
- School of Pharmacy, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
4
|
Lee SY, Yen IC, Lin JC, Chung MC, Liu WH. 4-Acetylantrocamol LT3 Inhibits Glioblastoma Cell Growth and Downregulates DNA Repair Enzyme O 6-Methylguanine-DNA Methyltransferase. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:983-999. [PMID: 33827387 DOI: 10.1142/s0192415x21500476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Glioblastoma multiforme (GBM) is a deadly malignant brain tumor that is resistant to most clinical treatments. Novel therapeutic agents that are effective against GBM are required. Antrodia cinnamomea has shown antiproliferative effects in GBM cells. However, the exact mechanisms and bioactive components remain unclear. Thus, the present study aimed to investigate the effect and mechanism of 4-acetylantrocamol LT3 (4AALT3), a new ubiquinone from Antrodia cinnamomeamycelium, in vitro. U87 and U251 cell lines were treated with the indicated concentration of 4AALT3. Cell viability, cell colony-forming ability, migration, and the expression of proteins in well-known signaling pathways involved in the malignant properties of glioblastoma were then analyzed by CCK-8, colony formation, wound healing, and western blotting assays, respectively. We found that 4AALT3 significantly decreased cell viability, colony formation, and cell migration in both in vitro models. The epidermal growth factor receptor (EGFR), phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR), Hippo/yes-associated protein (YAP), and cAMP-response element binding protein (CREB) pathways were suppressed by 4AALT3. Moreover, 4AALT3 decreased the level of DNA repair enzyme O6-methylguanine-DNA methyltransferase and showed a synergistic effect with temozolomide. Our findings provide the basis for exploring the beneficial effect of 4AALT3 on GBM in vivo.
Collapse
Affiliation(s)
- Shih-Yu Lee
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - I-Chuan Yen
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Jang-Chun Lin
- Department of Radiation Oncology, Shuang Ho Hospital, Taipei Medical University, Taipei, Taiwan.,Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Min-Chieh Chung
- Graduate Institute of Aerospace and Undersea Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Wei-Hsiu Liu
- Department of Surgery, School of Medicine, National Defense Medical Center, Taipei, Taiwan.,Department of Neurological Surgery Tri-Service General Hospital and National Defense Medical Center, No. 325, Sec. 2 Cheng-Kung Road Taipei 11490, Taiwan
| |
Collapse
|
5
|
Ding R, Ning X, Ye M, Yin Y. Antrodia camphorata extract (ACE)-induced apoptosis is associated with BMP4 expression and p53-dependent ROS generation in human colon cancer cells. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113570. [PMID: 33181285 DOI: 10.1016/j.jep.2020.113570] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Antrodia camphorata (AC) is a rare functional fungus in Taiwan and is known as traditional Chinese medicine. It has been reported to inhibit proliferation and promote apoptosis in human cancer cells. AIM OF THE STUDY To investigate the potential mechanism of apoptosis induced in colon cancer cells by Antrodia camphorata extract (ACE). MATERIALS AND METHODS The MTT assay and crystal violet staining were used to determine relative cell viability in vitro at 24 and 48 h. The effects of ACE on apoptosis were determined by Hoechst 33342 staining and flow cytometric analysis following Annexin V-FITC/PI staining. The gene expression profile of HCT116 cells was assessed by the RNA sequencing system. In combination with RNA-seq data and qRT-PCR, Western blot analysis was used to evaluate expression of proteins. The intracellular ROS of HCT116 cells were determined using a DCFH-DA fluorescence probe. RESULTS ACE significantly reduces cell viability in a dose-dependent manner and triggers apoptosis. To explore the underlying mechanism, we performed transcriptome analysis of ACE-treated colon cancer HCT116 cells. Bioinformatics analyses showed that ACE treatment is associated with pathways in cancer. We further used Cytoscape to analyze hub genes in this network. Among them, BMP4, which is associated with cancer cell death through regulation of the tumor suppressor p53, was significantly decreased at both mRNA and protein levels in ACE treatment groups. We found that cell death is reversible via inactivation or knockdown of p53 gene and reduction of reactive oxygen species (ROS) generation in response to ACE exposure, indicating that p53 plays an important role in ROS generation induced by ACE. Meanwhile, ROS scavenger NAC was used to verify that cell death is reversible via reduction of ROS. CONCLUSION Our findings demonstrate that ACE has potential as an anticancer agent that induces apoptosis through BMP4 and p53-dependent response to ROS in human colon cancer.
Collapse
Affiliation(s)
- Ruqian Ding
- Beijing Advanced Innovation Center for Big-Data Precision Medicine, Beihang University, Beijing, 100083, China
| | - Xianling Ning
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yuxin Yin
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
6
|
Manlai U, Chang SW, Lee SC, Ho WJ, Hsu TH, Lin JG, Lin CM, Chen YI, Chang SL. Hypoglycemic Effect of Electroacupuncture Combined with Antrodia cinnamomea in Dexamethasone-Induced Insulin-Resistant Rats. Med Acupunct 2021; 33:58-64. [PMID: 33613812 DOI: 10.1089/acu.2020.1455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Objective: Antrodia cinnamomea (AC), a medicinal mushroom indigenous to Taiwan, exerts various pharmacologic activities. This study compared and evaluated the hypoglycemic effect of treatment with electroacupuncture (EA) combined with AC in steroid-induced insulin-resistant (SIIR) rats. Materials and Methods: Rats were divided into saline, EA, AC, AC+EA, and rosiglitazone (TZD) groups. Plasma-glucose levels were measured in serial blood samples and compared before and after treatment in each group. The levels of signaling proteins-glucose transporter 4, (GLUT4), phosphoinositide 3-kinase (PI3-K), and 5' adenosine monophosphate-activated protein kinase (AMPK)-were analyzed by Western blotting to explore their mechanisms of action. Results: The AC+EA group had reduced plasma-glucose levels at 30 and 60 minutes in SIIR rats, compared to normal rats, and this was better than the EA, AC, and TZD groups at 60 minutes. Furthermore, the signaling protein (GLUT4, PI3-K, and AMPK) levels were increased significantly. Conclusions: These findings showed improved hypoglycemic activity and insulin resistance after EA combined with AC treatment. Therefore, the combined therapy might be a more-effective method than the individual therapies that elevates the expression of the signal proteins, as observed in this study.
Collapse
Affiliation(s)
- Unurzul Manlai
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan.,Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Su-Wei Chang
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Shih-Chieh Lee
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan.,Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Wai-Jane Ho
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan.,Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Tai-Hao Hsu
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan.,Department of Food Science and Biotechnology, Da-Yeh University, Changhua, Taiwan
| | - Jaug-Geng Lin
- School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| | - Chih-Ming Lin
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan.,Department of Neurology, Changhua Christian Hospital, Changhua City, Taiwan
| | - Ying-I Chen
- Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan
| | - Shih-Liang Chang
- College of Biotechnology and Bioresources, Da-Yeh University, Changhua, Taiwan.,Department of Medicinal Botanicals and Health Applications, Da-Yeh University, Changhua, Taiwan.,School of Chinese Medicine, China Medical University, Taichung City, Taiwan
| |
Collapse
|
7
|
Lu KH, Pan YC, Sheen LY. Combination of cut-log cultivated fruiting body and solid-state cultured mycelia of Taiwanofungus camphoratus ameliorates CCl 4-induced liver injury in rats. J Tradit Complement Med 2020; 10:166-174. [PMID: 32257880 PMCID: PMC7109478 DOI: 10.1016/j.jtcme.2019.04.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 12/25/2022] Open
Abstract
Taiwanofungus camphoratus, a medicinal mushroom indigenous to Taiwan, possesses various pharmacological functions. The most recognized ethnopharmacological relevance of T. camphoratus is hepatoprotection since it was traditionally used for treating liver disorders by Taiwan aborigines. The aim of this study is to evaluate the hepatoprotective effect of the combination of fruiting body and solid-state cultured mycelia of T. camphoratus (LDAC) on carbon tetrachloride (CCl4)-induced chronic liver damage in rats. We treated Wistar rats daily with low, medium and high [87.5, 175 and 437.5 mg/kg body weight (bw), respectively] doses of LDAC for 9 weeks. After the first week of treatment, rats were administered 20% CCl4 (0.5 mL/0.3 kg bw) twice a week to induce liver damage until the treatment ended. The results showed that administration of LDAC by oral gavage significantly reduced the absolute weight of the liver and the serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in CCl4-treated rats. The activities of the antioxidant enzymes glutathione peroxidase (GPx), glutathione reductase (GRd) and catalase (CAT) were increased by LDAC treatment. Moreover, LDAC improved CCl4-induced hepatic vacuolization, necrosis and fibrosis in a dose-dependent manner, and no adverse effects were observed in the LDAC-treated groups. Based on the results, LDAC is a promising hepatoprotective agent for preventing and ameliorating CCl4-induced chronic liver injury, and this effect might be exerted through activation of the antioxidant defense system. Combining cut-log fruiting body and solid-state mycelia of T. camphoratus is an efficient production. The HPLC fingerprint shows the index compounds in the combination (LDAC). LDAC decreases serum ALT and AST levels and elevates antioxidant activity in CCl4-treated rats. LDAC dramatically improves rat hepatic necrosis and fibrosis induced by CCl4.
Collapse
Affiliation(s)
- Kuan-Hung Lu
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Chun Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Department of Hospitality Management, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County 266, Taiwan
| | - Lee-Yan Sheen
- Institute of Food Science and Technology, National Taiwan University, Taipei 106, Taiwan.,Center for Food and Biomolecules, National Taiwan University, Taipei 106, Taiwan.,National Center for Food Safety Education and Research, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
8
|
Lin LH, Chi CH, Zhang XH, Chen YJ, Wang MF. Immunomodulatory Effects of Fruiting Body Extract and Solid-State-Cultivated Mycelia of Taiwanofungus camphoratus. Nutrients 2019; 11:nu11092256. [PMID: 31546903 PMCID: PMC6770431 DOI: 10.3390/nu11092256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/19/2023] Open
Abstract
Taiwanofungus camphoratus is a rare and valuable medicinal mushroom indigenous to Taiwan. It has traditionally been used to promote good health. This study aimed to explore the immunomodulatory effects of “Leader Deluxe Taiwanofungus camphoratus capsule” (LDAC). LDAC is a healthy food product composed of fruiting body extract and solid-state-cultivated mycelia of T. camphoratus. Two complementary studies were performed. In the first, LDAC was orally administered to BABL/c female mice for 6 weeks as part of a non-specific immune study. In the second, mice were treated with LDAC for 8 weeks and immunized with ovalbumin (OVA) in a specific immune study. LDAC increased the growth of splenic immune cells and enhanced the activity of macrophages and natural killer cells. It increased the levels of interleukin (IL)-2, interferon (IFN)-γ, serum immunoglobulin (Ig)G, and OVA-IgG, and decreased the levels of IL-4, IL-5, tumor necrosis factor (TNF)-α, serum IgE, and OVA-IgE. Thus, the findings of this study strongly supported the idea that LDAC possesses immunomodulatory activity.
Collapse
Affiliation(s)
- Liang-Hung Lin
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
- Division of Allergy, Immunology & Rheumatology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Tanzi Dist., Taichung 42743, Taiwan.
| | - Ching-Hsin Chi
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Xiao-Han Zhang
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Ying-Ju Chen
- Bachelor Program in Health Care and Social Work for Indigenous Students, College of Humanities & Social Sciences, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| | - Ming-Fu Wang
- Department of Food and Nutrition, Providence University, Shalu Dist., Taichung 43301, Taiwan.
| |
Collapse
|
9
|
Antrodia cinnamomea, a Treasured Medicinal Mushroom, Induces Growth Arrest in Breast Cancer Cells, T47D Cells: New Mechanisms Emerge. Int J Mol Sci 2019; 20:ijms20040833. [PMID: 30769922 PMCID: PMC6412332 DOI: 10.3390/ijms20040833] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/09/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
Reported cases of breast cancer have skyrocketed in the last decades with recent advances in examination techniques. Brest cancer has become the second leading cause of mortality among women worldwide, urging the scientific community to develop or find new drugs from natural sources with potent activity and a reasonable safety profile to tackle this ailment. Antrodia cinnamomea (AC) is a treasured medicinal fungus which has attracted attention due to its potent hepatoprotective and cytotoxic activities. We evaluated the antiproliferative activity of the ethanol extract of artificially cultured AC (EEAC) on breast cancer cells (T47D cells) in vivo and in vitro. Ethanol extract of artificially cultured AC inhibited T47D cells' proliferation mediated by cell cycle arrest at G1 phase as well induced autophagy. Immunoblotting assay confirmed that EEAC not only decreased the expression of the cell-cycle-related proteins but also increased the expression of transcription factor FOXO1, autophagic marker LC3 II, and p62. Ethanol extract of artificially cultured AC mediated endoplasmic reticulum stress by promoting the expression of IRE1 (inositol-requiring enzyme 1α), GRP78/Bip (glucose regulating protein 78), and CHOP (C/EBP homologous protein). Apart from previous studies, HDACs (histone deacetylases) activity was inhibited as demonstrated by a cell-free system, immunoblotting, and immunofluorescence assays following EEAC treatment. The in vivo studies demonstrated that EEAC decreased tumor volume and inhibited tumor growth without any significant side effects. High performance liquid chromatography profile demonstrated similar triterpenoids compared to the profile of wild AC ethanol extract. The multiple targets of EEAC on breast cancer cells suggested that this extract may be developed as a potential dietary supplement targeting this debilitating disease.
Collapse
|