1
|
Zhou Z, Cheng X, Yang F, Zhang Z, Liu K, Zhang X, Huang H, Wang J. Weightlessness damaged the ultrastructure of knee cartilage and quadriceps muscle, aggravated the degeneration of cartilage. ANNALS OF JOINT 2024; 9:37. [PMID: 39540071 PMCID: PMC11558274 DOI: 10.21037/aoj-24-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 09/22/2024] [Indexed: 11/16/2024]
Abstract
Background Long-term exposure to weightlessness can result in bone and muscle degradation, significantly impacting musculoskeletal function. Recent studies have also indicated damage to articular cartilage due to weightlessness. This study aims to observe the effects of simulated weightlessness on the cartilage microstructure of the quadriceps muscle and the muscular knee joint in rats. Methods A total of 30 rats were used in this study, of which 20 rats were subjected to simulated weightlessness by tail suspension, which may be suitable for clinical long-term bedridden patients. At 14 and 28 days, the microscopic morphology of knee cartilage and quadriceps femoris muscle was observed by transmission electron microscopy, and the collagen and water content of cartilage was evaluated by magnetic resonance imaging. The mitochondrial activity of knee muscle and the levels of inflammatory factors in synovial fluid were detected by enzyme-linked immunosorbent assay (ELISA). Biomechanical and histological evaluation of cartilage was performed. Results On day 14, T2 mapping revealed no significant loading effect. However, transmission electron microscopy revealed altered mitochondrial inner membrane structure in cartilage, with vacuolization, disrupted endoplasmic reticulum, alongside mitochondrial ultrastructural damage in muscle. ELISA results showed that a large number of mitochondria in muscle were inactivated, and the levels of inflammatory factors in synovial fluid were increased. The staining results showed slight fracture of the cartilage surface and the type II collagen-positive cells were reduced. Nanoindentation showed that the cartilage microsurface was uneven, and the elastic modulus and hardness were decreased. On day 28, T2 mapping analysis indicated increased cartilage T2 values. Transmission electron microscopy showed alterations in the structure of the mitochondrial inner membrane in cartilage, severe vacuolization, disrupted endoplasmic reticulum, and substantial mitochondrial damage in muscle tissue. Muscle mitochondrial activity was markedly decreased, inflammatory factors levels were elevated, and the cartilage surface exhibited severe damage. The type II collagen positive cells were further reduced, the micro-surface of cartilage was uneven, and the elastic modulus and hardness were significantly decreased. Conclusions The weightless environment resulted in the damage of endoplasmic reticulum and mitochondria of cartilage, mitochondrial damage of quadriceps muscle, inactivation of muscle mitochondria (P=0.01), increased intra-articular inflammation (P=0.01), decreased elastic modulus and hardness (P=0.03), and damaged cartilage surface, which aggravated cartilage degeneration.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Key Laboratory of Astronaut Health Center, China Astronaut Research and Training Center, Beijing, China
| | - Xu Cheng
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Fan Yang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Zhihua Zhang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Kaiping Liu
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Xin Zhang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Hongjie Huang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
| | - Jianquan Wang
- Department of Sports Medicine, Institute of Sports Medicine of Peking University, Peking University Third Hospital, Beijing, China
- Key Laboratory of Astronaut Health Center, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
2
|
Joe B. Spaceflight associated neuro-ocular syndrome: connections with terrestrial eye and brain disorders. FRONTIERS IN OPHTHALMOLOGY 2024; 4:1487992. [PMID: 39483988 PMCID: PMC11525009 DOI: 10.3389/fopht.2024.1487992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024]
Abstract
Spaceflight Associated Neuro-ocular Syndrome (SANS) is a series of findings found in astronauts who have experienced long-duration spaceflight. It is characterized by neuro-ocular changes that may irreversibly alter vision and increase the risk for the development of terrestrial eye and brain disorders. Theories regarding its etiology and countermeasures to combat the findings seen continue to evolve. There is currently no direct treatment for SANS. Traditional Chinese Medicine (TCM) modalities have been used to treat eye and brain disorders on Earth that are pathogenically similar to SANS, therefore, TCM may be able to target corresponding pathology in astronauts, prevent and mitigate SANS findings, and decrease the risk for future development of disorders. This paper intends to discuss pathological similarities between SANS and terrestrial eye and brain disorders and how TCM has been used to treat those disorders.
Collapse
Affiliation(s)
- Brenna Joe
- Five Branches University, San Jose, CA, United States
| |
Collapse
|
3
|
Zhang Y, Liu K, Zhan Y, Zhao Y, Chai Y, Ning J, Pan H, Kong L, Yuan W. Impact of Chinese herbal medicine on sarcopenia in enhancing muscle mass, strength, and function: A systematic review and meta-analysis of randomized controlled trials. Phytother Res 2024; 38:2303-2322. [PMID: 38419525 DOI: 10.1002/ptr.8154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/31/2023] [Accepted: 01/28/2024] [Indexed: 03/02/2024]
Abstract
Sarcopenia has become important to the public health with the increase in the aging population in society. However, the therapeutic effects of conventional approaches, including pharmacotherapy, exercise, and nutritional intervention, are far from satisfactory. Chinese herbal medicine is a new treatment format with interesting possibilities in sarcopenia has been widely practiced. The study aims to explore the effectiveness of Chinese herbal medicine in sarcopenia. We comprehensively searched the following electronic databases: Medline, EMBASE, APA PsycInfo, Cochrane Library, Web of Science, PubMed, and Chinese database from the establishment of the database to December 2022 (no language restrictions). Randomized controlled clinical studies on the use of Chinese herbal medicine in sarcopenia were selected in compliance with PRISMA guidelines. Review Manager and Stata were used for statistical analysis and the mean difference and standardized mean difference were adopted. Of 277 identified studies, 17 were eligible and included in our analysis (N = 1440 participants). The results showed that Chinese herbal medicine can improve total efficiency (RR = 1.29, 95% CI [1.21, 1.36], p < 0.00001) in sarcopenia and enhance muscle mass (SMD = 1.02, 95% CI [0.55, 1.50], p < 0.0001), and muscle strength measured by grip strength (SMD = 0.66, 95% CI [0.36, 0.96], p < 0.0001), measured by 60°/s knee extension peak TQ (MD = 5.63, 95% CI [-0.30, 11.57], p = 0.06) and muscle function measured by 6-meter walking speed (SMD = 1.34, 95% CI [0.60, 2.08], p = 0.0004), measured by the short physical performance battery of 1.50%, 95% CI (1.05, 1.95), measured by the EuroQoL 5-dimension of (SMD = 0.27, 95% CI [-0.10, 0.65], p = 0.16), suggesting that Chinese herbal medicine alone or combined with conventional treatment has ameliorating effect on sarcopenia. Chinese herbal medicine is a potential therapeutic strategy in sarcopenia. The funnel plot and Egger's test indicated publication bias. To confirm our conclusions, further high-quality studies should be conducted.
Collapse
Affiliation(s)
- Yujie Zhang
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaoqiang Liu
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunfan Zhan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ye Zhao
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongli Chai
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Ning
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hui Pan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingjun Kong
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wei'an Yuan
- Clinical Research Center, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
4
|
Yakabe M, Hosoi T, Sasakawa H, Akishita M, Ogawa S. Kampo formula hochu-ekki-to (Bu-Zhong-Yi-Qi-Tang, TJ-41) ameliorates muscle atrophy by modulating atrogenes and AMPK in vivo and in vitro. BMC Complement Med Ther 2022; 22:341. [PMID: 36578084 PMCID: PMC9795672 DOI: 10.1186/s12906-022-03812-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 11/28/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Muscle disuse results in loss of skeletal muscle mass and function. Hochu-ekki-to (TJ-41; Bu-Zhong-Yi-Qi-Tang in Chinese) is an herbal medicinal formulation used to treat patients with frailty, fatigue and appetite loss. It has been suggested that two atrogenes, atrogin-1 and muscle Ring finger 1 (MuRF1), are ubiquitin ligases involved in disuse-induced muscle atrophy and that 5' adenosine monophosphate-activated protein kinase (AMPK) is involved in skeletal muscle metabolism. Effects of TJ-41 on disuse-induced muscle atrophy are unclear. METHODS We subjected differentiated C2C12 myotubes to serum starvation, then examined the effects of TJ-41 on atrogenes expression, AMPK activity and the morphology of the myotubes. Male C57BL/6J mice were subjected to tail-suspension to induce hindlimb atrophy. We administered TJ-41 by gavage to the control group and the tail-suspended group, then examined the effects of TJ-41 on atrogene expression, AMPK activity, and the muscle weight. RESULTS Serum starvation induced the expression of atrogin-1 and MuRF1 in C2C12 myotubes, and TJ-41 significantly downregulated the expression of atrogin-1. Tail-suspension of the mice induced the expression of atrogin-1 and MuRF1 in skeletal muscle as well as its muscle atrophy, whereas TJ-41 treatment significantly downregulated the expression of atrogin-1 and ameliorated the loss of the muscle weight. In addition, TJ-41 also activated AMPK and inactivated Akt and mTOR in skeletal muscle in vivo. CONCLUSION TJ-41 inhibited atrogenes in an Akt-independent manner as well as activating AMPK in skeletal muscles in vivo, further implying the therapeutic potential of TJ-41 against disuse-induced muscle atrophy and other atrogenes-dependent atrophic conditions.
Collapse
Affiliation(s)
- Mitsutaka Yakabe
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Tatsuya Hosoi
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Hiroko Sasakawa
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Masahiro Akishita
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| | - Sumito Ogawa
- grid.26999.3d0000 0001 2151 536XDepartment of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, 7- 3-1, Hongo, Bunkyo-ku, 113-8655 Tokyo, Japan
| |
Collapse
|
5
|
Systems Pharmacology and Molecular Docking Reveals the Mechanisms of Nux Vomica for the Prevention of Myasthenia Gravis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:9043822. [PMID: 35795289 PMCID: PMC9251099 DOI: 10.1155/2022/9043822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/20/2022] [Indexed: 12/04/2022]
Abstract
Background Myasthenia gravis (MG) is a rare autoimmune disease with clinical symptoms of fluctuating muscle weakness. Due to the side effects of current therapies, there is an urgent need for a new medication for MG treatment. Nux vomica is a traditional Chinese medicine used in various diseases. However, the mechanism of action of Nux vomica against MG remains unclear. Methods Network pharmacology was used to explore the underlying mechanisms of Nux vomica in MG treatment, which was validated using molecular docking and in vivo experiments in mice. Results Twelve bioactive compounds and 72 targets in Nux vomica were screened. Seventy-nine myasthenia-related targets were obtained from the GENECARD and DisGeNET databases. PPI networks of Nux vomica- and myasthenia-related targets were constructed using Bisogenet, and these two networks were subsequently merged into an intersection to establish a core-target PPI network that consisted of 204 nodes and 4,668 edges. KEGG enrichment analysis indicated that 132 pathways were enriched in 204 core targets. In addition, we obtained 50 docking pairs via molecular docking. In vivo experiments revealed that Nux vomica can improve the symptoms of MG. Conclusion Nux vomica is involved in the pathogenesis of MG through the “multicomponent-target-pathway” mechanism.
Collapse
|
6
|
Li J, Qi G, Liu Y. Effect of Buzhong Yiqi decoction on anti-acetylcholine receptor antibody and clinical status in juvenile ocular myasthenia gravis. Medicine (Baltimore) 2021; 100:e27688. [PMID: 34871253 PMCID: PMC8568406 DOI: 10.1097/md.0000000000027688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 10/18/2021] [Indexed: 01/21/2023] Open
Abstract
Ocular myasthenia gravis (MG) is the mainly widespread type of MG among juveniles. Buzhong Yiqi decoction (BZ) is a well-known traditional Chinese medicine prescription for treating MG. It has rarely been discussed whether the concentration of anti-acetylcholine receptor (AChR) antibodies is related to the clinical status of juvenile ocular myasthenia gravis (JOMG) treated with BZ.The patients with JOMG who had more than once AChR-antibody (ab) test and treated with BZ were retrospectively identified from June 2013 to January 2020 in the first hospital in Shijiazhuang. The presence or absence of ocular symptoms was used to grade the effectiveness of treatment. Generalized estimating equations logistic regression analysis was used to evaluate the effect of AChR ab concentration on the clinical status of MG.A total of 549 AChR-ab tests were performed in 135 patients, and the corresponding clinical status was recorded. One hundred two patients received treatment with BZ only and 33 combined with immunosuppressive drugs. In the group receiving only BZ treatment, the anti-acetylcholine receptor ab concentration was positively correlated with the clinical score after treatment.The results suggest that BZ could affect the AChR-ab. Repeated AChR-ab assays can provide information about the clinical status. For JOMG patients who only receive Buzhong Yiqi Decoction treatment, this can support treatment decisions.
Collapse
Affiliation(s)
- Jiaduo Li
- Center of Treatment of Myasthenia Gravis, People‘s Hospital of Shijiazhuang Affiliated to Hebei Medical University, China
| | - Guoyan Qi
- Center of Treatment of Myasthenia Gravis, People‘s Hospital of Shijiazhuang Affiliated to Hebei Medical University, China
| | - Yaling Liu
- Gastroenterology Department, People‘s Hospital of Shijiazhuang Affiliated to Hebei Medical University, China
| |
Collapse
|
7
|
Li H, Huang H, Long W, Zuo J, Huang H. Herbal medicine significantly improved muscle function in a patient with type 1 facioscapulohumeral muscular dystrophy: A case report. Explore (NY) 2020; 17:247-251. [PMID: 32505519 DOI: 10.1016/j.explore.2020.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIM Facioscapulohumeral muscular dystrophy (FSHD) is a common muscular disorder. At present, treatments for FSHD have limited effects on the muscle function of patients. A famous Chinese medicine formula, Buzhong Yiqi (BZYQ), has shown promising effects on several muscular diseases, but evidence regarding its effect on FSHD is lacking. This study aimed to examine the effect of BZYQ on FSHD. CASE PRESENTATION A 15-year-old girl suffered from progressive muscle weakness, with a genetically confirmed diagnosis of FSHD. Except for routine FSHD management, the patient received BZQY every day. The muscle strength of the patient remarkably increased after discharge. CONCLUSIONS This study was novel in reporting a significant improvement in muscle function in a patient with FSHD treated with an integrated approach of BZYQ and routine management. Therefore, BZYQ might be a potential treatment for FSHD, requiring further investigations.
Collapse
Affiliation(s)
- Hongjuan Li
- The First Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Chinese Medicine), Guangzhou, Guangdong, 510120, China.
| | - Haoming Huang
- The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China; Department of Radiology, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Wenjie Long
- Department of Geriatric Medicine, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Junling Zuo
- Department of Emergency, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China.
| | - Hongqiang Huang
- The First Comprehensive Department, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Province Hospital of Chinese Medicine), Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
8
|
Ko PH, Huang CW, Chang HH, Chuang EY, Tsai MH, Lai LC. Identifying the functions and biomarkers of Codonopsis pilosula and Astragalus membranaceus aqueous extracts in hepatic cells. Chin Med 2019; 14:10. [PMID: 30936938 PMCID: PMC6425643 DOI: 10.1186/s13020-019-0233-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/15/2019] [Indexed: 12/20/2022] Open
Abstract
Background Homeostasis is a crucial concept used to describe the condition of patients and the roles of herbs in traditional Chinese medicine. Qi-deficiency pattern is one of the conditions when loss of homeostasis and is usually characterized by symptoms including lassitude, spontaneous sweating, and a weak pulse, which are not easy to quantitate. Codonopsis pilosula and Astragalus membranaceus were usually prescribed for carriers with hepatitis and patients with metastatic colon cancer, because these patients tended to experience fatigue. However, crude drugs were prescribed based on the exterior symptoms of patients without controlling clinical setting, such as gender, age, and dietary habits. Limited molecular evidence of using gene expression as the guide for description is available. Therefore, the purpose of this study was to identify potential and objective biomarkers of these two qi-related drugs in a simplified cellular system. Methods Aqueous extracts of crude qi-tonifying herbs, C. pilosula and A. membranaceus, and that of a qi-consuming drug, Citrus reticulata, were prepared. Human liver cancer HepG2 cells were treated with the extracts of qi-tonifying herbs for 24 h. Differentially expressed genes were identified using microarrays and quantitative RT-PCR (qRT-PCR) and validated in two other hepatocellular cell lines, Huh7 and L-02. Results A total of 67 differentially expressed probes that responded to both herbs were identified. A pathway analysis revealed that these genes were involved in the development, growth, movement, and viability of the liver cells. Conclusions After qRT-PCR validation and examination of clinical data from public domains, our results showed that two genes, GDF15 and HMOX1, could serve as biomarkers in liver cells for identifying responses after treatment with C. pilosula and A. membranaceus.
Collapse
Affiliation(s)
- Pin-Hao Ko
- 1Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Chiung-Wei Huang
- 2Department of Physiology, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807 Taiwan
| | - Hen-Hong Chang
- 3School of Post-Baccalaureate Chinese Medicine, China Medical University, Taichung, 404 Taiwan.,4Department of Chinese Medicine, China Medical University Hospital, Taichung, 404 Taiwan
| | - Eric Y Chuang
- 5Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, 106 Taiwan.,6Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, 100 Taiwan
| | - Mong-Hsun Tsai
- 6Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, 100 Taiwan.,7Institute of Biotechnology, National Taiwan University, Taipei, 106 Taiwan
| | - Liang-Chuan Lai
- 1Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei, 100 Taiwan.,6Bioinformatics and Biostatistics Core, Center of Genomic Medicine, National Taiwan University, Taipei, 100 Taiwan
| |
Collapse
|
9
|
A Review of Complementary and Alternative Medicine Therapies on Muscular Atrophy: A Literature Review of In Vivo/In Vitro Studies. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:8654719. [PMID: 30581489 PMCID: PMC6276427 DOI: 10.1155/2018/8654719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 08/28/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023]
Abstract
Objective The objective of this review is to evaluate the recent treatment and study trends of complementary and alternative medicine (CAM) treatments on muscular atrophy by reviewing in vivo/in vitro studies. Materials and Methods The searches were conducted via electronic databases including PubMed, the Cochrane Library, China National Knowledge Infrastructure (CNKI), Wanfang MED, and five Korean databases. Only in vivo and in vitro studies were included in this study. Results A total of 44 studies (27 in vivo studies, 8 in vitro studies, and 9 in vivo with in vitro) were included. No serious maternal or fetal complications occurred. There were various animal models induced with muscular atrophy through “hindlimb suspension”, “nerve damage”, ‘alcohol or dexamethasone treatment', “diabetes”, “CKD”, “stroke”, “cancer”, “genetic modification”, etc. In 28 of 36 articles measuring muscle mass, CAM significantly increased the mass. Additionally, 10 of them showed significant improvement in muscle function. In most in vitro studies, significant increases in both the diameter of myotubes and muscle cell numbers were reported. The mechanisms of action of protein synthesis, degradation, autophagy, and apoptotic markers were also investigated. Conclusions These results demonstrate that CAM could prevent muscular atrophy. Further studies about CAM on muscular atrophy are needed.
Collapse
|
10
|
Hashiguchi A, Tian J, Komatsu S. Proteomic Contributions to Medicinal Plant Research: From Plant Metabolism to Pharmacological Action. Proteomes 2017; 5:proteomes5040035. [PMID: 29215602 PMCID: PMC5748570 DOI: 10.3390/proteomes5040035] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/03/2017] [Accepted: 12/05/2017] [Indexed: 12/11/2022] Open
Abstract
Herbal medicine is a clinical practice of utilizing medicinal plant derivatives for therapeutic purposes. It has an enduring history worldwide and plays a significant role in the fight against various diseases. Herbal drug combinations often exhibit synergistic therapeutic action compared with single-constituent dosage, and can also enhance the cytotoxicity induced by chemotherapeutic drugs. To explore the mechanism underlying the pharmacological action of herbs, proteomic approaches have been applied to the physiology of medicinal plants and its effects on animals. This review article focuses on the existing proteomics-based medicinal plant research and discusses the following topics: (i) plant metabolic pathways that synthesize an array of bioactive compounds; (ii) pharmacological action of plants tested using in vivo and in vitro studies; and (iii) the application of proteomic approaches to indigenous plants with scarce sequence information. The accumulation of proteomic information in a biological or medicinal context may help in formulating the effective use of medicinal plants.
Collapse
Affiliation(s)
- Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| | - Jingkui Tian
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| |
Collapse
|