1
|
Li Y, Xue M, Deng X, Dong L, Nguyen LXT, Ren L, Han L, Li C, Xue J, Zhao Z, Li W, Qing Y, Shen C, Tan B, Chen Z, Leung K, Wang K, Swaminathan S, Li L, Wunderlich M, Mulloy JC, Li X, Chen H, Zhang B, Horne D, Rosen ST, Marcucci G, Xu M, Li Z, Wei M, Tian J, Shen B, Su R, Chen J. TET2-mediated mRNA demethylation regulates leukemia stem cell homing and self-renewal. Cell Stem Cell 2023; 30:1072-1090.e10. [PMID: 37541212 PMCID: PMC11166201 DOI: 10.1016/j.stem.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 08/06/2023]
Abstract
TET2 is recurrently mutated in acute myeloid leukemia (AML) and its deficiency promotes leukemogenesis (driven by aggressive oncogenic mutations) and enhances leukemia stem cell (LSC) self-renewal. However, the underlying cellular/molecular mechanisms have yet to be fully understood. Here, we show that Tet2 deficiency significantly facilitates leukemogenesis in various AML models (mediated by aggressive or less aggressive mutations) through promoting homing of LSCs into bone marrow (BM) niche to increase their self-renewal/proliferation. TET2 deficiency in AML blast cells increases expression of Tetraspanin 13 (TSPAN13) and thereby activates the CXCR4/CXCL12 signaling, leading to increased homing/migration of LSCs into BM niche. Mechanistically, TET2 deficiency results in the accumulation of methyl-5-cytosine (m5C) modification in TSPAN13 mRNA; YBX1 specifically recognizes the m5C modification and increases the stability and expression of TSPAN13 transcripts. Collectively, our studies reveal the functional importance of TET2 in leukemogenesis, leukemic blast cell migration/homing, and LSC self-renewal as an mRNA m5C demethylase.
Collapse
Affiliation(s)
- Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong, China
| | - Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Le Xuan Truong Nguyen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Chenying Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Hematology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 31003, Zhejiang, China
| | - Jianhuang Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Brandon Tan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| | - Srividya Swaminathan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Department of Pediatrics, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Ling Li
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - James C Mulloy
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, Harbin 150081, China
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Bin Zhang
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - David Horne
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| | - Steven T Rosen
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA; Department of Hematology/Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA
| | - Guido Marcucci
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; Department of Hematological Malignancies Translational Science, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Mingjiang Xu
- Department of Molecular Medicine, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Zejuan Li
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang 110001, Liaoning, China
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA; Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA 91010, USA; City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA.
| |
Collapse
|
2
|
Tang BY, Ge J, Wu Y, Wen J, Tang XH. The Role of ADAM17 in Inflammation-Related Atherosclerosis. J Cardiovasc Transl Res 2022; 15:1283-1296. [PMID: 35648358 DOI: 10.1007/s12265-022-10275-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/06/2022] [Indexed: 10/18/2022]
Abstract
Atherosclerosis is a chronic inflammatory disease that poses a huge economic burden due to its extremely poor prognosis. Therefore, it is necessary to explore potential mechanisms to improve the prevention and treatment of atherosclerosis. A disintegrin and metalloprotease 17 (ADAM17) is a cell membrane-bound protein that performs a range of functions through membrane protein shedding and intracellular signaling. ADAM17-mediated inflammation has been identified to be an important contributor to atherosclerosis; however, the specific relationship between its multiple regulatory roles and the pathogenesis of atherosclerosis remains unclear. Here, we reviewed the activation, function, and regulation of ADAM17, described in detail the role of ADAM17-mediated inflammatory damage in atherosclerosis, and discussed several controversial points. We hope that these insights into ADAM17 biology will lead to rational management of atherosclerosis. ADAM17 promotes vascular inflammation in endothelial cells, smooth muscle cells, and macrophages, and regulates the occurrence and development of atherosclerosis.
Collapse
Affiliation(s)
- Bai-Yi Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jin Ge
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China
| | - Yang Wu
- Department of Cardiology, Third Hospital of Changsha, 176 W. Laodong Road, Changsha, 410015, Hunan, China
| | - Juan Wen
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| | - Xiao-Hong Tang
- Department of Cardiology, Third Xiang-Ya Hospital, Central South University, 138 Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
3
|
Liu C, Yang S, Zhang Y, Wang C, Du D, Wang X, Liu T, Liang G. Emerging Roles of N6-Methyladenosine Demethylases and Its Interaction with Environmental Toxicants in Digestive System Cancers. Cancer Manag Res 2021; 13:7101-7114. [PMID: 34526822 PMCID: PMC8437382 DOI: 10.2147/cmar.s328188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/19/2021] [Indexed: 01/02/2023] Open
Abstract
Digestive system cancers are common cancers with high cancer deaths worldwide. They have become a major threat to public health and economic burden. As one of the most universal RNA modifications in eukaryotes, the N6-methyladenosine (m6A) modification is involved in the occurrence, development, prognosis, and treatment response of various cancers, including digestive system cancers. M6A demethylases shape the m6A landscape dynamically, playing important roles in cancers. In addition, accumulating evidence reveal that many environmental toxicants are the established risk factors for digestive system cancers and associated with m6A modification. In this review, we summarize the multiple functions of M6A demethylases (fat mass and obesity-associated protein (FTO), AlkB homolog 5 (ALKBH5) and AlkB homolog 3 (ALKBH3)) in digestive system cancers, which are aberrantly expressed and affect cancer progression. We also discuss the potential roles of m6A demethylases in the assessment of environmental exposure, the signature for prevention and diagnosis of digestive system cancers.
Collapse
Affiliation(s)
- Caiping Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Sheng Yang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Yanqiu Zhang
- Department of Environmental Occupational Health, Taizhou Center for Disease Control and Prevention, Taizhou, 225300, Jiangsu, People's Republic of China
| | - Chuntao Wang
- Jiangsu Vocational College of Medicine, Yancheng, 224000, Jiangsu, People's Republic of China
| | - Dandan Du
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Xian Wang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Tong Liu
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Geyu Liang
- School of Public Health, Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|