1
|
Chang G, Shih HM, Pan CF, Wu CJ, Lin CJ. Effect of Low Protein Diet Supplemented with Ketoanalogs on Endothelial Function and Protein-Bound Uremic Toxins in Patients with Chronic Kidney Disease. Biomedicines 2023; 11:biomedicines11051312. [PMID: 37238983 DOI: 10.3390/biomedicines11051312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Studies have demonstrated that a low-protein diet supplemented with ketoanalogs (KAs) could significantly retard progression of renal function in patients with chronic kidney disease (CKD) stages 3-5. However, its effects on endothelial function and serum levels of protein-bound uremic toxins remain elusive. Therefore, this study explored whether a low-protein diet (LPD) supplemented with KAs affects kidney function, endothelial function, and serum uremic toxin levels in a CKD-based cohort. In this retrospective cohort, we enrolled 22 stable CKD stage 3b-4 patients on LPD (0.6-0.8 g/day). Patients were categorized into control (LPD only) and study groups (LPD + KAs 6 tab/day). Serum biochemistry, total/free indoxyl sulfate (TIS/FIS), total/free p-cresyl sulfate (TPCS/FPCS), and flow-mediated dilation (FMD) were measured before and after 6 months of KA supplementation. Before the trial, there were no significant differences in kidney function, FMD, or uremic toxin levels between the control and study groups. When compared with the control group, the paired t-test showed a significant decrease in TIS and FIS (all p < 0.05) and a significant increase in FMD, eGFR, and bicarbonate (all p < 0.05). In multivariate regression analysis, an increase in FMD (p < 0.001) and a decrease in FPCS (p = 0.012) and TIS (p < 0.001) remained persistent findings when adjusted for age, systolic blood pressure (SBP), sodium, albumin, and diastolic blood pressure (DBP). LPD supplemented with KAs significantly preserves kidney function and provides additional benefits on endothelial function and protein-bound uremic toxins in patients with CKD.
Collapse
Affiliation(s)
- George Chang
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Hong-Mou Shih
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100001, Taiwan
| | - Chi-Feng Pan
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
| | - Chih-Jen Wu
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 220001, Taiwan
| | - Cheng-Jui Lin
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei 104217, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei 220001, Taiwan
- Department of Medicine, Mackay Junior College of Medicine, Nursing and Management, Taipei 100001, Taiwan
| |
Collapse
|
2
|
Solovieva M, Shatalin Y, Odinokova I, Krestinina O, Baburina Y, Mishukov A, Lomovskaya Y, Pavlik L, Mikheeva I, Holmuhamedov E, Akatov V. Disulfiram oxy-derivatives induce entosis or paraptosis-like death in breast cancer MCF-7 cells depending on the duration of treatment. Biochim Biophys Acta Gen Subj 2022; 1866:130184. [PMID: 35660414 DOI: 10.1016/j.bbagen.2022.130184] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND Dithiocarbamates and derivatives (including disulfiram, DSF) are currently investigated as antineoplastic agents. We have revealed earlier the ability of hydroxocobalamin (vitamin В12b) combined with diethyldithiocarbamate (DDC) to catalyze the formation of highly cytotoxic oxidized derivatives of DSF (DSFoxy, sulfones and sulfoxides). METHODS Electron and fluorescent confocal microscopy, molecular biology and conventional biochemical techniques were used to study the morphological and functional responses of MCF-7 human breast cancer cells to treatment with DDC and B12b alone or in combination. RESULTS DDC induces unfolded protein response in MCF-7 cells. The combined use of DDC and B12b causes MCF-7 cell death. Electron microscopy revealed the separation of ER and nuclear membranes, leading to the formation of both cytoplasmic and perinuclear vacuoles, with many fibers inside. The process of vacuolization coincided with the appearance of ER stress markers, a marked damage to mitochondria, a significant inhibition of 20S proteasome, and actin depolimerization at later stages. Specific inhibitors of apoptosis, necroptosis, autophagy, and ferroptosis did not prevent cell death. A short- time (6-h) exposure to DSFoxy caused a significant increase in the number of entotic cells. CONCLUSIONS These observations indicate that MCF-7 cells treated with a mixture of DDC and B12b die by the mechanism of paraptosis. A short- time exposure to DSFoxy caused, along with paraptosis, a significant activation of the entosis and its final stage, lysosomal cell death. GENERAL SIGNIFICANCE The results obtained open up opportunities for the development of new approaches to induce non-apoptotic death of cancer cells by dithiocarbamates.
Collapse
Affiliation(s)
- Marina Solovieva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yuri Shatalin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia.
| | - Irina Odinokova
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Olga Krestinina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Yulia Baburina
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Artem Mishukov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Laboratory of Biorheology and Biomechanics, Center for Theoretical Problems of Physicochemical Pharmacology RAS, Moscow 109029, Russian Federation
| | - Yana Lomovskaya
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Liubov Pavlik
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Irina Mikheeva
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| | - Ekhson Holmuhamedov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia; Department of Pharmacology, University of North Carolina at Chapel Hill, NC 27599, USA
| | - Vladimir Akatov
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow region 142290, Russia
| |
Collapse
|
3
|
Impact of Uremic Toxins on Endothelial Dysfunction in Chronic Kidney Disease: A Systematic Review. Int J Mol Sci 2022; 23:ijms23010531. [PMID: 35008960 PMCID: PMC8745705 DOI: 10.3390/ijms23010531] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Patients with chronic kidney disease (CKD) are at a highly increased risk of cardiovascular complications, with increased vascular inflammation, accelerated atherogenesis and enhanced thrombotic risk. Considering the central role of the endothelium in protecting from atherogenesis and thrombosis, as well as its cardioprotective role in regulating vasorelaxation, this study aimed to systematically integrate literature on CKD-associated endothelial dysfunction, including the underlying molecular mechanisms, into a comprehensive overview. Therefore, we conducted a systematic review of literature describing uremic serum or uremic toxin-induced vascular dysfunction with a special focus on the endothelium. This revealed 39 studies analyzing the effects of uremic serum or the uremic toxins indoxyl sulfate, cyanate, modified LDL, the advanced glycation end products N-carboxymethyl-lysine and N-carboxyethyl-lysine, p-cresol and p-cresyl sulfate, phosphate, uric acid and asymmetric dimethylarginine. Most studies described an increase in inflammation, oxidative stress, leukocyte migration and adhesion, cell death and a thrombotic phenotype upon uremic conditions or uremic toxin treatment of endothelial cells. Cellular signaling pathways that were frequently activated included the ROS, MAPK/NF-κB, the Aryl-Hydrocarbon-Receptor and RAGE pathways. Overall, this review provides detailed insights into pathophysiological and molecular mechanisms underlying endothelial dysfunction in CKD. Targeting these pathways may provide new therapeutic strategies reducing increased the cardiovascular risk in CKD.
Collapse
|
4
|
Zhang Y, Li F, Liu L, Jiang H, Hu H, Du X, Ge X, Cao J, Wang Y. Salinomycin triggers endoplasmic reticulum stress through ATP2A3 upregulation in PC-3 cells. BMC Cancer 2019; 19:381. [PMID: 31023247 PMCID: PMC6482559 DOI: 10.1186/s12885-019-5590-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/09/2019] [Indexed: 02/06/2023] Open
Abstract
Background Salinomycin is a monocarboxylic polyether antibiotic and is a potential chemotherapy drug. Our previous studies showed that salinomycin inhibited cell growth and targeted CSCs in prostate cancer. However, the precise target of salinomycin action is unclear. Methods In this work, we analyzed and identified differentially expressed genes (DEGs) after treatment with or without salinomycin using a gene expression microarray in vitro (PC-3 cells) and in vivo (NOD/SCID mice xenograft model generated from implanted PC-3 cells). Western blotting and immunohistochemical staining were used to analyze the expression of ATP2A3 and endoplasmic reticulum (ER) stress biomarkers. Flow cytometry was used to analyze the cell cycle, apoptosis and intracellular Ca2+ concentration. Results A significantly upregulated gene, ATPase sarcoplasmatic/endoplasmatic reticulum Ca2+ transporting 3 (ATP2A3), was successfully identified. In subsequent studies, we found that ATP2A3 overexpression could trigger ER stress and exert anti-cancer effects in PC-3 and DU145 cells. ATP2A3 was slightly expressed, but the ER stress biomarkers showed strong staining in prostate cancer tissues. We also found that salinomycin could trigger ER stress, which might be related to ATP2A3-mediated Ca2+ release in PC-3 cells. Furthermore, we found that salinomycin-triggered ER stress could promote apoptosis and thus exert anti-cancer effects in prostate cancer cells. Conclusion This study demonstrates that ATP2A3 might be one of the potential targets for salinomycin, which can inhibit Ca2+ release and trigger ER stress to exert anti-cancer effects.
Collapse
Affiliation(s)
- Yunsheng Zhang
- Clinical Research Institute, The Second Affiliated Hospital, University of South China; Clinical Research Center For Breast & Thyroid Disease Prevention In Hunan Province, Hengyang, 421001, People's Republic of China
| | - Fang Li
- College of Nursing, Hunan Polytechnic of Environment and Biology, Hengyang, 421005, People's Republic of China
| | - Luogen Liu
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Hongtao Jiang
- Department of Urology, The Second Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Hua Hu
- Cancer Research Institute, The Second Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Xiaobo Du
- Department of Urology, The First People's Hospital Yueyang, Yueyang, 414000, People's Republic of China
| | - Xin Ge
- Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China
| | - Jingsong Cao
- Medical College, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, University of South China, Hengyang, 421001, People's Republic of China
| | - Yi Wang
- Department of Urology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570102; Clinical Research Institute, The Second Affiliated Hospital, University of South China, Hengyang, 421001, People's Republic of China.
| |
Collapse
|
5
|
Mitochondrial TRPC3 promotes cell proliferation by regulating the mitochondrial calcium and metabolism in renal polycystin-2 knockdown cells. Int Urol Nephrol 2019; 51:1059-1070. [PMID: 31012036 DOI: 10.1007/s11255-019-02149-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Previous studies indicate that autosomal dominant polycystic kidney disease (ADPKD) cells exhibited dysregulated calcium homeostasis and enhanced cell proliferation. TRPC3 has been shown to function in the modulation of calcium and sodium entry, but whether TRPC3 plays a role in cellular abnormalities of ADPKD cells has not been defined. METHODS Human conditionally immortalized proximal tubular epithelial cells and mouse IMCD3 cells were used with polycystin-2 (PC2, TRPP2) knockdown. Cell proliferation assay was used to detect the cell proliferations upon different treatments. QRT-PCR and western blotting were used to measure the expression profiles of TRPP2 and other proteins. High-resolution respirometry, enzymic activities and ROS levels were detected to reflect the mitochondrial functions. Calcium and sodium uptakes were measured using Fura2-AM and SBFI dyes. RESULTS We showed that PC2 knockdown promoted cell proliferation, ROS productions and ERK phosphorylation, compared with negative control. Meanwhile, we demonstrated that receptor-operated calcium entry (ROCE) exhibited less reductions compared with store-operated calcium entry (SOCE) upon PC2 knockdown. Inhibition of ROCE and SOCE by specific inhibitors partially reversed the enhanced cell proliferation, ROS productions and ERK phosphorylation induced by PC2 knockdown. Moreover, TRPC3 upregulation was observed upon PC2 knockdown, which acted as both SOC and ROC, promoting cation entry, cell proliferation and ERK phosphorylation. Furthermore, we showed that mitochondrial located TRPC3 was upregulated and modulating mitochondrial calcium uptake, thus promoting the ROS productions in the presence of PC2 knockdown. CONCLUSIONS We demonstrated that TRPC3 upregulation upon PC2 knockdown aggravated the mitochondrial abnormalities and cell proliferation by modulating mitochondrial calcium uptake. Targeting TRPC3 might be a promising target for ADPKD treatment.
Collapse
|