1
|
Zhou Y, Li M, Song J, Shi Y, Qin X, Gao Z, Lv Y, Du G. The cardioprotective effects of the new crystal form of puerarin in isoproterenol-induced myocardial ischemia rats based on metabolomics. Sci Rep 2020; 10:17787. [PMID: 33082379 PMCID: PMC7575583 DOI: 10.1038/s41598-020-74246-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Puerarin has shown unique pharmacological effects on myocardial ischemia (MI). Changing the crystal form is an effective approach to improve the cardioprotective effects of puerarin. However, the mechanisms of the new crystal form of puerarin are unclear. In this study, an electrocardiogram, echocardiography, cardiac marker enzymatic activity, oxidative stress indices, and myocardial histology analysis of cardiac tissues were performed to evaluate the cardioprotective effects of the new crystal form of puerarin. Moreover, serum and cardiac tissue metabolomics based on nuclear magnetic resonance (NMR) were used to investigate the potential mechanism of the new crystal form. The results indicated that the new crystal form of puerarin (30 mg/kg) could improve oxidative stress indices, and these improvements were similar to those of the original crystal form of puerarin (120 mg/kg). The new crystal form of puerarin (30 mg/kg) could effectively improve the activities of cardiac marker enzymes, and the improvement effects were better than those of the original crystal form (120 mg/kg). Moreover, metabolomics analysis showed that amino acid metabolism, oxidative stress and energy metabolism were disturbed after MI and could be improved by puerarin. These results demonstrated that the new crystal form of puerarin was effective in treating MI.
Collapse
Affiliation(s)
- Yuzhi Zhou
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.,Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China.,Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Mengru Li
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Jia Song
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Yongqiang Shi
- Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, No. 92, Wucheng Road, Taiyuan, 030006, China
| | - Zhaolin Gao
- Shandong Province Key Laboratory of Polymorph Drugs, Shandong Yikang Pharmaceutical Co. Ltd, No. 3288, Yikang Avenue, Tengzhou, 277513, China
| | - Yang Lv
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China
| | - Guanhua Du
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 2A Nan Wei Road, Beijing, 100050, China.
| |
Collapse
|
2
|
Szeiffova Bacova B, Viczenczova C, Andelova K, Sykora M, Chaudagar K, Barancik M, Adamcova M, Knezl V, Egan Benova T, Weismann P, Slezak J, Tribulova N. Antiarrhythmic Effects of Melatonin and Omega-3 Are Linked with Protection of Myocardial Cx43 Topology and Suppression of Fibrosis in Catecholamine Stressed Normotensive and Hypertensive Rats. Antioxidants (Basel) 2020; 9:antiox9060546. [PMID: 32580481 PMCID: PMC7346184 DOI: 10.3390/antiox9060546] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/16/2020] [Accepted: 06/19/2020] [Indexed: 02/07/2023] Open
Abstract
Cardiac β-adrenergic overstimulation results in oxidative stress, hypertrophy, ischemia, lesion, and fibrosis rendering the heart vulnerable to malignant arrhythmias. We aimed to explore the anti-arrhythmic efficacy of the anti-oxidative and anti-inflammatory compounds, melatonin, and omega-3, and their mechanisms of actions in normotensive and hypertensive rats exposed to isoproterenol (ISO) induced β-adrenergic overdrive. Eight-month-old, male SHR, and Wistar rats were injected during 7 days with ISO (cumulative dose, 118 mg/kg). ISO rats were either untreated or concomitantly treated with melatonin (10 mg/kg/day) or omega-3 (Omacor, 1.68 g/kg/day) until 60 days of ISO withdrawal and compared to non-ISO controls. Findings showed that both melatonin and omega-3 increased threshold current to induce ventricular fibrillation (VF) in ISO rats regardless of the strain. Prolonged treatment with these compounds resulted in significant suppression of ISO-induced extracellular matrix alterations, as indicated by reduced areas of diffuse fibrosis and decline of hydroxyproline, collagen-1, SMAD2/3, and TGF-β1 protein levels. Importantly, the highly pro-arrhythmic ISO-induced disordered cardiomyocyte distribution of electrical coupling protein, connexin-43 (Cx43), and its remodeling (lateralization) were significantly attenuated by melatonin and omega-3 in Wistar as well as SHR hearts. In parallel, both compounds prevented the post-ISO-related increase in Cx43 variant phosphorylated at serine 368 along with PKCε, which are known to modulate Cx43 remodeling. Melatonin and omega-3 increased SOD1 or SOD2 protein levels in ISO-exposed rats of both strains. Altogether, the results indicate that anti-arrhythmic effects of melatonin and omega-3 might be attributed to the protection of myocardial Cx43 topology and suppression of fibrosis in the setting of oxidative stress induced by catecholamine overdrive in normotensive and hypertensive rats.
Collapse
Affiliation(s)
- Barbara Szeiffova Bacova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Csilla Viczenczova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, A-1090 Vienna, Austria
| | - Katarina Andelova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Matus Sykora
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | | | - Miroslav Barancik
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Michaela Adamcova
- Department of Physiology, Faculty of Medicine, Charles University, 50003 Hradec Kralove, Czech Republic;
| | - Vladimir Knezl
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Tamara Egan Benova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Peter Weismann
- Faculty of Medicine, Comenius University, 81499 Bratislava, Slovakia;
| | - Jan Slezak
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
| | - Narcisa Tribulova
- Centre of Experimental Medicine, SAS, 84104 Bratislava, Slovakia; (B.S.B.); (C.V.); (K.A.); (M.S.); (M.B.); (V.K.); (T.E.B.); (J.S.)
- Correspondence: ; Tel.: +00421-2-32295423
| |
Collapse
|
3
|
Yuan H, Fan Y, Wang Y, Gao T, Shao Y, Zhao B, Li H, Xu C, Wei C. Calcium‑sensing receptor promotes high glucose‑induced myocardial fibrosis via upregulation of the TGF‑β1/Smads pathway in cardiac fibroblasts. Mol Med Rep 2019; 20:1093-1102. [PMID: 31173208 PMCID: PMC6625450 DOI: 10.3892/mmr.2019.10330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is a major complication of diabetes and myocardial fibrosis is its major pathological feature. Calcium-sensing receptor (CaSR) is a G protein-coupled receptor and participates in the regulation of calcium homeostasis; it is implicated in a range of diseases, including myocardial ischemia/reperfusion injury, myocardial infarction and pulmonary hypertension. However, whether CaSR is associated with myocardial fibrosis in DCM has remained elusive. In the present study, type 1 diabetic (T1D) rats and primary neonatal rat cardiac fibroblasts (CFs) were used to observe changes in CaSR to assess its potential as an indicator of myocardial fibrosis. The in vivo experiments revealed that in the T1D and CaSR agonist (R568) groups, evident collagen (Col)-I and -III deposition was present after 12 weeks. Furthermore, the in vitro experiment indicated that the levels of transforming growth factor (TGF)-β1, phosphorylated (p-) protein kinase C, p-p38, p-Smad2, TβRI, TβRII, along with the intracellular Ca2+ levels and the content of TGF-β1 in the culture medium were significantly increased in a high-glucose (HG) group and an R568-treated group. Treatment with the CaSR inhibitor Calhex231 significantly inhibited the abovementioned changes. Collectively, the results indicated that the increase of CaSR expression in CFs may induce intracellular Ca2+ increases and the activation of TGF-β1/Smads, and enhance the proliferation of CFs, along with the excessive deposition of Col, resulting in myocardial fibrosis. The present results indicate an important novel mechanism for HG-induced myocardial fibrosis and suggest that CaSR may be a promising potential therapeutic target for DCM.
Collapse
Affiliation(s)
- Hui Yuan
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yuqi Fan
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yuehong Wang
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Tielei Gao
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Yiying Shao
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Bingbing Zhao
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Hongzhu Li
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Changqing Xu
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Can Wei
- Department of Pathophysiology, Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| |
Collapse
|
4
|
Koga M, Kuramochi M, Karim MR, Izawa T, Kuwamura M, Yamate J. Immunohistochemical characterization of myofibroblasts appearing in isoproterenol-induced rat myocardial fibrosis. J Vet Med Sci 2018; 81:127-133. [PMID: 30464077 PMCID: PMC6361647 DOI: 10.1292/jvms.18-0599] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fibrotic lesion is formed by myofibroblasts capable of producing collagens. The myofibroblasts are characterized by immunoexpressions of vimentin, desmin and α-smooth muscle actin (α-SMA)
in varying degrees. The cellular characteristics remain investigated in myocardial fibrosis. We analyzed immunophenotypes of myofibroblasts appearing in isoproterenol-induced myocardial
fibrosis in rats until 28 days after injection (10 mg/kg body weight); the lesions developed as interstitial edema and inflammatory cell reaction on 8 hr and days 1 and 3, and fibrosis
occurred on days 1, 3, 7, 14, and 21 by gradual deposition of collagens, showing the greatest grade on day 14; the lesions gradually reduced with sporadic scar until day 28. Myofibroblasts
expressing vimentin and α-SMA increased with a peak on day 3, and then, gradually decreased onwards. Interestingly, Thy-1 expressing cells appeared in the affected areas, apparently being
corresponding to the grade similar to vimentin- and α-SMA-positive cells. Thy-1 is expressed in immature mesenchymal cells such as pericytes with pluripotent nature. The immunoreactivity for
A3-antigen, a marker for immature mesenchymal cells, was seen in some surrounding cells. There were no cells reacting with antibodies to nestin or glial fibrillary acidic protein, although
hepatic myofibroblats have been reported to react with these antibodies. Collectively, myofibroblasts appearing in rat myocardial fibrosis may have been derived from immature mesenchymal
cells positive for Thy-1 or A3-antigen, with thereafter showing expressions of vimentin and α-SMA in differentiation.
Collapse
Affiliation(s)
- Masaaki Koga
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan.,Nippon Shinyaku Co., Ltd., 14, Nishinosho-Monguchi-cho, Kisshoin, Minami-ku, Kyoto 601-8550, Japan
| | - Mizuki Kuramochi
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mohammad Rabiul Karim
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Takeshi Izawa
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Mitsuru Kuwamura
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| | - Jyoji Yamate
- Laboratory of Veterinary Pathology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-58 Rinku-Ourai-Kita, Izumisano-shi, Osaka 598-8531, Japan
| |
Collapse
|