1
|
Piccinno E, Scalavino V, Armentano R, Giannelli G, Serino G. miR-195-5p as Regulator of γ-Catenin and Desmosome Junctions in Colorectal Cancer. Int J Mol Sci 2023; 24:17084. [PMID: 38069408 PMCID: PMC10707010 DOI: 10.3390/ijms242317084] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/18/2023] Open
Abstract
Desmosomes play a key role in the regulation of cell adhesion and signaling. Dysregulation of the desmosome complex is associated with the loss of epithelial cell polarity and disorganized tissue architecture typical of colorectal cancer (CRC). The aim of this study was to investigate and characterize the effect of miR-195-5p on desmosomal junction regulation in CRC. In detail, we proposed to investigate the deregulation of miR-195-5p and JUP, a gene target that encodes a desmosome component in CRC patients. JUP closely interacts with desmosomal cadherins, and downstream, it regulates several intracellular transduction factors. We restored the miR-195-5p levels by transient transfection in colonic epithelial cells to examine the effects of miR-195-5p on JUP mRNA and protein expression. The JUP regulation by miR-195-5p, in turn, determined a modulation of desmosome cadherins (Desmoglein 2 and Desmocollin 2). Furthermore, we focused on whether the miR-195-5p gain of function was also able to modulate the expression of key components of Wnt signaling, such as NLK, LEF1 and Cyclin D1. In conclusion, we have identified a novel mechanism controlled by miR-195-5p in the regulation of adhesive junctions, suggesting its potential clinical relevance for future miRNA-based therapy in CRC.
Collapse
Affiliation(s)
| | | | | | | | - Grazia Serino
- National Institute of Gastroenterology S. De Bellis, IRCCS Research Hospital, Via Turi 27, 70013 Castellana Grotte, BA, Italy; (E.P.); (V.S.); (R.A.); (G.G.)
| |
Collapse
|
2
|
Ram AK, Vairappan B. Role of zonula occludens in gastrointestinal and liver cancers. World J Clin Cases 2022; 10:3647-3661. [PMID: 35647143 PMCID: PMC9100728 DOI: 10.12998/wjcc.v10.i12.3647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/08/2021] [Accepted: 03/06/2022] [Indexed: 02/06/2023] Open
Abstract
A growing body of evidence suggests that tight junction (TJ) proteins play a crucial role in the pathogenesis of various diseases, including gastrointestinal (GI) cancer and hepatocellular carcinoma (HCC). TJ proteins primarily maintain the epithelial and endothelial cells intact together through integral proteins however, recent reports suggest that they also regulate gene expression necessary for cell proliferation, angiogenesis, and metastasis through adapter proteins such as zonula occludens (ZO). ZO proteins are membrane-associated cytosolic scaffolding proteins that modulate cell proliferation by interacting with several transcription factors. Reduced ZO proteins in GI cancer and HCC are correlated with tumor development and poor prognosis. Pubmed has searched for using the keyword ZO and gastric cancer, ZO and cancer, and ZO and HCC for the last ten years to date. This review summarized the role of ZO proteins in cell proliferation and their expression in GI cancer and HCC. Furthermore, therapeutic interventions targeting ZO in GI and liver cancers are reviewed.
Collapse
Affiliation(s)
- Amit Kumar Ram
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| | - Balasubramaniyan Vairappan
- Liver Diseases Research Lab, Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India
| |
Collapse
|
4
|
Sun Z, Zhang Q, Yuan W, Li X, Chen C, Guo Y, Shao B, Dang Q, Zhou Q, Wang Q, Wang G, Liu J, Kan Q. MiR-103a-3p promotes tumour glycolysis in colorectal cancer via hippo/YAP1/HIF1A axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:250. [PMID: 33218358 PMCID: PMC7678148 DOI: 10.1186/s13046-020-01705-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022]
Abstract
Background Glycolysis plays an essential role in the growth and metastasis of solid cancer and has received increasing attention in recent years. However, the complex regulatory mechanisms of tumour glycolysis remain elusive. This study aimed to explore the molecular effect and mechanism of the noncoding RNA miR-103a-3p on glycolysis in colorectal cancer (CRC). Methods We explored the effects of miR-103a-3p on glycolysis and the biological functions of CRC cells in vitro and in vivo. Furthermore, we investigated whether miR-103a-3p regulates HIF1A expression through the Hippo/YAP1 pathway, and evaluated the role of the miR-103a-3p-LATS2/SAV1-YAP1-HIF1A axis in promoting glycolysis and angiogenesis in CRC cells and contributed to invasion and metastasis of CRC cells. Results We found that miR-103a-3p was highly expressed in CRC tissues and cell lines compared with matched controls and the high expression of miR-103a-3p was associated with poor patient prognosis. Under hypoxic conditions, a high level of miR-103a-3p promoted the proliferation, invasion, migration, angiogenesis and glycolysis of CRC cells. Moreover, miR-103a-3p knockdown inhibited the growth, proliferation, and glycolysis of CRC cells and promoted the Hippo-YAP1 signalling pathway in nude mice in a xenograft model. Here, we demonstrated that miR-103a-3p could directly target LATS2 and SAV1. Subsequently, we verified that TEAD1, a transcriptional coactivator of Yes-associated protein 1 (YAP1), directly bound to the HIF1A promoter region and the YAP1 and TEAD1 proteins co-regulated the expression of HIF1A, thus promoting tumour glycolysis. Conclusions MiR-103a-3p, which is highly expressed in CRC cells, promotes HIF1A expression by targeting the core molecules LATS2 and SAV1 of the Hippo/YAP1 pathway, contributing to enhanced proliferation, invasion, migration, glycolysis and angiogenesis in CRC. Our study revealed the functional mechanisms of miR-103a-3p/YAP1/HIF1A axis in CRC glycolysis, which would provide potential intervention targets for molecular targeted therapy of CRC.
Collapse
Affiliation(s)
- Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China. .,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Qiuge Zhang
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Department of Geriatric Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xiaoli Li
- Department of Geriatric Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Chen Chen
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China.,School of Life Science, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yaxin Guo
- School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, China.,Henan Academy of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Bo Shao
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.,Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Quanbo Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Qisan Wang
- Department of Gastrointestinal Surgery, The Affiliated Tumor Hospital, Xinjiang Medical University, Xinjiang, 830000, Urumqi, China
| | - Guixian Wang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
5
|
Du J, Zhang F, Zhang L, Jia Y, Chen H. MicroRNA-103 regulates the progression in endometrial carcinoma through ZO-1. Int J Immunopathol Pharmacol 2020; 33:2058738419872621. [PMID: 31456452 PMCID: PMC6713959 DOI: 10.1177/2058738419872621] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Endometrial carcinoma (EC) is one of the most common gynecological cancers in many developing countries. Although tremendous advances have been made in the diagnosis and treatment of EC, there is still no adequate biomarker currently available for predicting the prognosis of this cancer. In this study, we found that miR-103 expression was significantly upregulated in EC tissues than their paired non-carcinoma tissues. Overexpression of miR-103 significantly promoted EC cell proliferation, while downregulation of miR-103 significantly suppressed EC cell proliferation. In addition, ZO-1 expression was significantly downregulated in the EC tissues than their paired non-carcinoma tissues. We also found an inverse correlation between ZO-1 and miR-103. Moreover, ZO-1 was validated as the direct target of miR-103. The downregulation of ZO-1 significantly enhanced EC cell proliferation. In conclusion, miR-103 could regulate EC cell proliferation through directly targeting ZO-1. Our results provide a potential development of microRNA-based targeted approaches for the treatment of EC.
Collapse
Affiliation(s)
- Jing Du
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Fengli Zhang
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Ling Zhang
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Yueyue Jia
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng, P.R. China
| | - Huixiao Chen
- Department of Gynecology and Obstetrics, Liaocheng People's Hospital, Liaocheng, P.R. China
| |
Collapse
|
6
|
Chen Y, Wang J, Wang D, Kang T, Du J, Yan Z, Chen M. TNNT1, negatively regulated by miR-873, promotes the progression of colorectal cancer. J Gene Med 2019; 22:e3152. [PMID: 31830337 PMCID: PMC7027576 DOI: 10.1002/jgm.3152] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/28/2019] [Accepted: 12/10/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Troponin T1 (TNNT1) is a subunit of troponin that has been linked to neuromuscular disorder. Recently, it was reported that TNNT1 facilitates the proliferation of breast cancer cells. Interestingly, Cancer Genome Atlas data indicate that its overexpression is associated with an unfavorable prognosis of colorectal cancer (CRC) patients. The present study aimed to explore the expression, function and mechanism of dysregulation of TNNT1 in CRC. METHODS Immunohistochemical staining and a real-time polymerase chain reaction were used to compare the expression level of TNNT1 in CRC tissues and adjacent tissues. Western blotting was used to detect the expression of TNNT1 in cell lines. Kaplan-Meier analysis and a chi-squared test were applied to evaluate the potential of TNNT1 to function as a cancer biomarker. RNA interference was used to inhibit TNNT1 expression in CRC cells, followed by detection of cell proliferation, apoptosis, migration and invasion. A luciferase reporter gene assay was used to determine the regulatory relationship between miR-873 and TNNT1. RESULTS In the present study, we found that TNNT1 was significantly up-regulated in CRC samples and cell lines. The up-regulation of TNNT1 was also associated with several clinicopathologic features, and its high expression was correlated with an unfavorable prognosis of the patients. Knockdown of TNNT1 markedly arrested proliferation, migration and invasion, whereas it also promoted apoptosis. TNNT1 was identified as a target gene of miR-873, and there was a negative correlation among CRC samples. CONCLUSIONS In conclusion, we have demonstrated that TNNT1, regulated by miR-873, is an oncogene of CRC associated with patient prognosis.
Collapse
Affiliation(s)
- Yu Chen
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinsong Wang
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Donghua Wang
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Ting Kang
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Jinghu Du
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Zeqiang Yan
- Department of Gastroenterology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Manyu Chen
- Department of General Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|