1
|
Liu YC, Lin YH, Chi HC, Huang PS, Liao CJ, Liou YS, Lin CC, Yu CJ, Yeh CT, Huang YH, Lin KH. CRNDE acts as an epigenetic modulator of the p300/YY1 complex to promote HCC progression and therapeutic resistance. Clin Epigenetics 2022; 14:106. [PMID: 35999564 PMCID: PMC9400329 DOI: 10.1186/s13148-022-01326-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies worldwide. The long-term prognosis for HCC remains extremely poor, with drug resistance being the major underlying cause of recurrence and mortality. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is an epigenetic mediator and plays an important role to drive proliferation and drug resistance in HCC. However, CRNDE as an epigenetic regulator with influences sorafenib resistance in HCC is unclear. Thus, we explore the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. Method Detection of the expression level of CRNDE and EGFR in clinical specimens of HCC. CRNDE, EGFR, p300, and YY1expression were altered in HCC cells through transfection with different plasmids, and cell proliferation, migration, invasion, and sorafenib resistance were subsequently observed. Immunoprecipitation, chromatin immunoprecipitation, re-chromatin immunoprecipitation, site-directed mutagenesis, RNA Immunoprecipitation, immune fluorescence, qRT-PCR, and western blotting were performed to uncover the mechanisms of CRNDE regulation. The xenograft nude mice model was used to investigate the tumor growth and sorafenib resistance. Results In this study, we showed that CRNDE expression is significantly positively correlated with that of epidermal growth factor receptor (EGFR) in clinical specimens of HCC and induces proliferation and sorafenib resistance of HCC via EGFR-mediated signaling. Mechanistically, CRNDE stabilized the p300/YY1 complex at the EGFR promoter and simultaneously enhanced histone H3K9 and H3K27 acetylation, which serve as markers of relaxed chromatin. EGFR was positively upregulated by the epigenetic complex, p300/YY1, in a manner dependent on CRNDE expression, leading to enhanced tumor cell proliferation and sorafenib resistance. Furthermore, C646, a p300 inhibitor, suppressed EGFR transcriptional activity by decreasing chromatin relaxation and YY1 binding, which effectively reduced proliferation/sorafenib resistance and prolonged overall survival. Conclusion Our collective findings support the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-022-01326-3.
Collapse
Affiliation(s)
- Yu-Chin Liu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Hsiang-Cheng Chi
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan
| | - Po-Shuan Huang
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Yu-Syuan Liou
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chiao-Chun Lin
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China
| | - Chia-Jung Yu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China.,Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Thoracic Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Chau-Ting Yeh
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan, Taiwan. .,Graduate Institute of Biomedical Sciences, College of Medicine, Chang-Gung University, 259 Wen-Hwa 1 Road, Taoyuan, Taiwan, Republic of China. .,Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan. .,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
2
|
Abstract
With the development of precision medicine, the efficiency of tumor treatment has been significantly improved. More attention has been paid to targeted therapy and immunotherapy as the key to precision treatment of cancer. Targeting epidermal growth factor receptor (EGFR) has become one of the most important targeted treatments for various cancers. Comparing with traditional chemotherapy drugs, targeting EGFR is highly selective in killing tumor cells with better safety, tolerability and less side effect. In addition, tumor immunotherapy has become the fourth largest tumor therapy after surgery, radiotherapy and chemotherapy, especially immune checkpoint inhibitors. However, these treatments still produce a certain degree of drug resistance. Non-coding RNAs (ncRNAs) were found to play a key role in carcinogenesis, treatment and regulation of the efficacy of anticancer drugs in the past few years. Therefore, in this review, we aim to summarize the targeted treatment of cancers and the functions of ncRNAs in cancer treatment.
Collapse
|
3
|
Xie H, Ma Y, Li J, Chen H, Xie Y, Chen M, Zhao X, Tang S, Zhao S, Zhang Y, Du J, Zhang F, Gu L. WNT7A Promotes EGF-Induced Migration of Oral Squamous Cell Carcinoma Cells by Activating β-Catenin/MMP9-Mediated Signaling. Front Pharmacol 2020; 11:98. [PMID: 32174831 PMCID: PMC7054863 DOI: 10.3389/fphar.2020.00098] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/28/2020] [Indexed: 12/24/2022] Open
Abstract
Aims and hypothesis Epidermal growth factor (EGF) has been shown to induce the migration of various cancer cells. However, the underlying signaling mechanisms for EGF-induced migration of oral squamous cell carcinoma (OSCC) remain to be elucidated. WNT7A, a member of the family of 19 Wnt secreted glycoproteins, is commonly associated with tumor development. It is mostly unknown whether and, if so, how EGF modulates WNT7A in OSCC cells. The role of WNT7A in OSCC was thus investigated to explore the underlying signaling mechanisms for EGF-induced migration of OSCC. Methods Cell migration was measured by Wound healing assay and Transwell assay. Western blotting was carried out to detect the expression of WNT7A, MMP9, β-catenin, p-AKT, and p-ERK. The cells were transfected with plasmids or siRNA to upregulate or downregulate the expression of WNT7A. The location of β-catenin was displayed by immunofluorescence microscopy. Immunohistochemistry was carried out to confirm the relation between WNT7A expression and OSCC progression. Results The present study showed that the levels of WNT7A mRNA and protein were increased by EGF stimulation in OSCC cells. Besides, it was proved that p-AKT, but not p-ERK, mediated the expression of WNT7A protein induced by EGF. Furthermore, the inhibition of AKT activation prevented the EGF-induced increase of WNT7A and matrix metallopeptidase 9 (MMP9) expression and translocation of β-catenin from the cytoplasm to the nucleus. Moreover, histological analysis of OSCC specimens revealed an association between WNT7A expression and poor clinical prognosis of the disease. Conclusions The data in this paper indicated that WNT7A could be a potential oncogene in OSCC and identified a novel PI3K/AKT/WNT7A/β-catenin/MMP9 signaling for EGF-induced migration of OSCC cells.
Collapse
Affiliation(s)
- Hui Xie
- Jiangsu Key Lab of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Yadong Ma
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Li
- Jiangsu Key Lab of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huixia Chen
- Jiangsu Key Lab of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.,Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Yongfu Xie
- Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Minzhen Chen
- Department of Implantology, Changzhou Stomatological Hospital, Changzhou, China
| | - Xuyang Zhao
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Sijie Tang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Shuo Zhao
- Department of Pathology, The People's Hospital of Bozhou, Bozhou, China
| | - Yujie Zhang
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Jun Du
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Feimin Zhang
- Jiangsu Key Lab of Oral Diseases, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luo Gu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Pentenero M, Bowers LM, Jayasinghe R, Yap T, Cheong SC, Kerr AR, Farah CS, Alevizos I. World Workshop on Oral Medicine VII: Clinical evidence of differential expression of lncRNAs in oral squamous cell carcinoma: A scoping review. Oral Dis 2019; 25 Suppl 1:88-101. [PMID: 31140697 PMCID: PMC6544174 DOI: 10.1111/odi.13076] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/08/2019] [Accepted: 02/22/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have important roles in regulating gene expression pertaining to cell proliferation, survival, migration and genomic stability. Dysregulated expression of lncRNAs is implicated in cancer initiation, progression and metastasis. OBJECTIVES To explore, map and summarize the extent of evidence from clinical studies investigating the differential expression of lncRNAs in oral/tongue squamous cell carcinoma. METHODS PubMed, Scopus and Web of Science were used as search engines. Clinical, full-length, English language studies were included. PRISMA-ScR protocol was used to evaluate and present results. The present scoping review summarizes relationships of the differential expression of lncRNAs with the presence of tumour and with clinicopathological features including survival. RESULTS Almost half of the investigated transcripts have been explored in more than one study, yet not always with consistent results. The collected data were also compared to the limited studies investigating oral epithelial dysplasia. Data are not easily comparable, first because of different methods used to define what differential expression is, and second because only a limited number of studies performed multivariate analyses to identify clinicopathological features associated with the differentially expressed lncRNAs. CONCLUSIONS Standard methods and more appropriate data analyses are needed in order to achieve reliable results from future studies.
Collapse
Affiliation(s)
- Monica Pentenero
- Department of Oncology, Oral Medicine and Oral Oncology Unit, University of Turin, Turin, Italy
| | - Leah M Bowers
- Department of Stomatology, Division of Oral Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Ruwan Jayasinghe
- Department of Oral Medicine and Periodontology, Faculty of Dental Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Tami Yap
- Melbourne Dental School, University of Melbourne, Melbourne, Victoria, Australia
| | - Sok Ching Cheong
- Head and Neck Cancer Research Team, Cancer Research Malaysia, Subang Jaya, Selangor, Malaysia
| | | | - Camile S Farah
- Australian Centre for Oral Oncology Research & Education, UWA Dental School, Faculty of Health and Medical Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Ilias Alevizos
- Sjogren's Syndrome and Salivary Gland Dysfunction Unit, NIDCR/NIH, Bethesda, MD, USA
| |
Collapse
|