1
|
Li Y, Pan M, Meng S, Xu W, Wang S, Dou M, Zhang C. The Effects of Zinc Oxide Nanoparticles on Antioxidation, Inflammation, Tight Junction Integrity, and Apoptosis in Heat-Stressed Bovine Intestinal Epithelial Cells In Vitro. Biol Trace Elem Res 2024; 202:2042-2051. [PMID: 37648935 DOI: 10.1007/s12011-023-03826-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Zinc oxide nanoparticles (nano-ZnO) have diverse applications in numerous biomedical processes. The present study explored the effects of these nanoparticles on antioxidation, inflammation, tight junction integrity, and apoptosis in heat-stressed bovine intestinal epithelial cells (BIECs). Primary BIECs that were isolated and cultured from calves either were subjected to heat stress alone (42°C for 6 h) or were simultaneously heat-stressed and treated with nano-ZnO (0.8 μg/mL). Cell viability, apoptosis, and expression of genes involved in antioxidation (Nrf2, HO-1, SOD1, and GCLM), inflammation-related genes (TLR4, NF-κB, TNF-α, IL-6, IL-8, and IL-10), intestinal barrier genes (Claudin, Occludin, and ZO-1), and apoptosis-related genes (Cyt-c, Caspase-3, and Caspase-9) were assessed to evaluate the effect of nano-ZnO on heat-stressed BIECs. The nanoparticles significantly increased cell viability and decreased the rate of apoptosis of BIECs induced by heat stress. In addition, nano-ZnO promoted the expression of antioxidant-related genes HO-1 and GCLM and anti-inflammatory cytokine gene IL-10, and inhibited the pro-inflammatory cytokine-related genes IL-6 and IL-8. The nanoparticles also enhanced expression of the Claudin and ZO-1 genes, and decreased expression of the apoptosis-related genes Cyt-c and Caspase-3. These results reveal that nano-ZnO improve the antioxidant and immune capacity of BIECs and mitigate apoptosis of intestinal epithelial cells induced by heat stress. Thus, nano-ZnO have potential for detrimental the adverse effects of heat stress in dairy cows.
Collapse
Affiliation(s)
- Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Pan
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Sudan Meng
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Wenhao Xu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China
| | - Mengying Dou
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
- Hunan Provincial Key Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
2
|
Kiso-Farnè K, Tsuruyama T. Epidermal growth factor receptor cascade prioritizes the maximization of signal transduction. Sci Rep 2022; 12:16950. [PMID: 36216834 PMCID: PMC9550784 DOI: 10.1038/s41598-022-20663-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/16/2022] [Indexed: 12/29/2022] Open
Abstract
Many studies have been performed to quantify cell signaling. Cell signaling molecules are phosphorylated in response to extracellular stimuli, with the phosphorylation sequence forming a signal cascade. The information gain during a signal event is given by the logarithm of the phosphorylation molecule ratio. The average information gain can be regarded as the signal transduction quantity (ST), which is identical to the Kullback-Leibler divergence (KLD), a relative entropy. We previously reported that if the total ST value in a given signal cascade is maximized, the ST rate (STR) of each signaling molecule per signal duration (min) approaches a constant value. To experimentally verify this theoretical conclusion, we measured the STR of the epidermal growth factor (EGF)-related cascade in A431 skin cancer cells following stimulation with EGF using antibody microarrays against phosphorylated signal molecules. The results were consistent with those from the theoretical analysis. Thus, signaling transduction systems may adopt a strategy that prioritizes the maximization of ST. Furthermore, signal molecules with similar STRs may form a signal cascade. In conclusion, ST and STR are promising properties for quantitative analysis of signal transduction.
Collapse
Affiliation(s)
- Kaori Kiso-Farnè
- grid.258799.80000 0004 0372 2033Center for anatomical, pathological, and forensic medical researches, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan
| | - Tatsuaki Tsuruyama
- grid.258799.80000 0004 0372 2033Center for anatomical, pathological, and forensic medical researches, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501 Japan ,grid.258799.80000 0004 0372 2033Drug and Discovery Medicine, Graduate School of Medicine, Medical Innovation Center, Kyoto University, Kyoto, 606-8507 Japan ,grid.69566.3a0000 0001 2248 6943Department of Physics, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku 6-3, Sendai, 980-8578 Japan ,grid.418889.40000 0001 2198 115XDepartment of Molecular Biosciences, Radiation Effects Research Foundation, Minami-ku, Hiroshima, 732-0815 Japan ,grid.415392.80000 0004 0378 7849Department of Tumor Research, Kitano Hospital, The Tazuke Kofukai Medical Research Institute, Kita-ku, Osaka, 530-8480 Japan
| |
Collapse
|
3
|
Wang M, Liu Y, Bi X, Ma H, Zeng G, Guo J, Guo M, Ling Y, Zhao C. Genome-Wide Detection of Copy Number Variants in Chinese Indigenous Horse Breeds and Verification of CNV-Overlapped Genes Related to Heat Adaptation of the Jinjiang Horse. Genes (Basel) 2022; 13:genes13040603. [PMID: 35456409 PMCID: PMC9033042 DOI: 10.3390/genes13040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/05/2023] Open
Abstract
In the present study, genome-wide CNVs were detected in a total of 301 samples from 10 Chinese indigenous horse breeds using the Illumina Equine SNP70 Bead Array, and the candidate genes related to adaptability to high temperature and humidity in Jinjiang horses were identified and validated. We determined a total of 577 CNVs ranging in size from 1.06 Kb to 2023.07 Kb on the 31 pairs of autosomes. By aggregating the overlapping CNVs for each breed, a total of 495 CNVRs were detected in the 10 Chinese horse breeds. As many as 211 breed-specific CNVRs were determined, of which 64 were found in the Jinjiang horse population. By removing repetitive CNV regions between breeds, a total of 239 CNVRs were identified in the Chinese indigenous horse breeds including 102 losses, 133 gains and 4 of both events (losses and gains in the same region), in which 131 CNVRs were novel and only detected in the present study compared with previous studies. The total detected CNVR length was 41.74 Mb, accounting for 1.83% of the total length of equine autosomal chromosomes. The coverage of CNVRs on each chromosome varied from 0.47% to 15.68%, with the highest coverage on ECA 12, but the highest number of CNVRs was detected on ECA1 and ECA24. A total of 229 genes overlapping with CNVRs were detected in the Jinjiang horse population, which is an indigenous horse breed unique to the southeastern coast of China exhibiting adaptability to high temperature and humidity. The functional annotation of these genes showed significant relation to cellular heat acclimation and immunity. The expression levels of the candidate genes were validated by heat shock treatment of various durations on fibroblasts of horses. The results show that the expression levels of HSPA1A were significantly increased among the different heat shock durations. The expression level of NFKBIA and SOCS4 declined from the beginning of heat shock to 2 h after heat shock and then showed a gradual increase until it reached the highest value at 6 h and 10 h of heat shock, respectively. Breed-specific CNVRs of Chinese indigenous horse breeds were revealed in the present study, and the results facilitate mapping CNVs on the whole genome and also provide valuable insights into the molecular mechanisms of adaptation to high temperature and humidity in the Jinjiang horse.
Collapse
Affiliation(s)
- Min Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Yu Liu
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Xiaokun Bi
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
| | - Hongying Ma
- Shaanxi Key Laboratory for Animal Conservation, Shaanxi Institute of Zoology, Xi’an 710032, China;
| | - Guorong Zeng
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Jintu Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Minghao Guo
- Jinjiang Animal Husbandry and Veterinary Station, Quanzhou 362200, China; (G.Z.); (J.G.); (M.G.)
| | - Yao Ling
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
| | - Chunjiang Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (Y.L.); (X.B.); (Y.L.)
- Equine Center, China Agricultural University, Beijing 100193, China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, Beijing 100193, China
- National Engineering Laboratory for Animal Breeding, Beijing 100193, China
- Beijing Key Laboratory for Genetic Improvement of Livestock and Poultry, Beijing 100193, China
- Correspondence:
| |
Collapse
|
4
|
A standardized extract of Asparagus officinalis stem improves HSP70-mediated redox balance and cell functions in bovine cumulus-granulosa cells. Sci Rep 2021; 11:18175. [PMID: 34518614 PMCID: PMC8437968 DOI: 10.1038/s41598-021-97632-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 08/25/2021] [Indexed: 11/24/2022] Open
Abstract
Heat shock (HS) protein 70 (HSP70), a well-known HS-induced protein, acts as an intracellular chaperone to protect cells against stress conditions. Although HS induces HSP70 expression to confer stress resistance to cells, HS causes cell toxicity by increasing reactive oxygen species (ROS) levels. Recently, a standardized extract of Asparagus officinalis stem (EAS), produced from the byproduct of asparagus, has been shown to induce HSP70 expression without HS and regulate cellular redox balance in pheochromocytoma cells. However, the effects of EAS on reproductive cell function remain unknown. Here, we investigated the effect of EAS on HSP70 induction and oxidative redox balance in cultured bovine cumulus-granulosa (CG) cells. EAS significantly increased HSP70 expression; however, no effect was observed on HSP27 and HSP90 under non-HS conditions. EAS decreased ROS generation and DNA damage and increased glutathione (GSH) synthesis under both non-HS and HS conditions. Moreover, EAS synergistically increased HSP70 and HSF1 expression and increased progesterone levels in CG cells. Treatment with an HSP70 inhibitor significantly decreased GSH level, increased ROS level, and decreased HSF1, Nrf2, and Keap1 expression in the presence of EAS. Furthermore, EAS significantly increased progesterone synthesis. Thus, EAS improves HSP70-mediated redox balance and cell function in bovine CG cells.
Collapse
|
5
|
Respiratory Syncytial Virus-Induced Oxidative Stress Leads to an Increase in Labile Zinc Pools in Lung Epithelial Cells. mSphere 2020; 5:5/3/e00447-20. [PMID: 32461278 PMCID: PMC7253603 DOI: 10.1128/msphere.00447-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Zinc supplementation in cell culture has been shown to inhibit various viruses, like herpes simplex virus, rotavirus, severe acute respiratory syndrome (SARS) coronavirus, rhinovirus, and respiratory syncytial virus (RSV). However, whether zinc plays a direct antiviral role in viral infections and whether viruses have adopted strategies to modulate zinc homeostasis have not been investigated. Results from clinical trials of zinc supplementation in infections indicate that zinc supplementation may be beneficial in a pathogen- or disease-specific manner, further underscoring the importance of understanding the interaction between zinc homeostasis and virus infections at the molecular level. We investigated the effect of RSV infection on zinc homeostasis and show that RSV infection in lung epithelial cells leads to modulation of zinc homeostasis. The intracellular labile zinc pool increases upon RSV infection in a multiplicity of infection (MOI)-dependent fashion. Small interfering RNA (siRNA)-mediated knockdown of the ubiquitous zinc uptake transporter ZIP1 suggests that labile zinc levels are increased due to the increased uptake by RSV-infected cells as an antiviral response. Adding zinc to culture medium after RSV infection led to significant inhibition of RSV titers, whereas depletion of zinc by a zinc chelator, N,N,N',N'-tetrakis(2-pyridinylmethyl)-1,2-ethanediamine (TPEN) led to an increase in RSV titers. The inhibitory effect of zinc was specific, as other divalent cations had no effect on RSV titers. Both RSV infection and zinc chelation by TPEN led to reactive oxygen species (ROS) induction, whereas addition of zinc blocked ROS induction. These results suggest a molecular link between RSV infection, zinc homeostasis, and oxidative-stress pathways and provide new insights for developing strategies to counter RSV infection.IMPORTANCE Zinc deficiency rates in developing countries range from 20 to 30%, and zinc supplementation trials have been shown to correct clinical manifestations attributed to zinc deficiency, but the outcomes in the case of respiratory infections have been inconsistent. We aimed at understanding the role of zinc homeostasis in respiratory syncytial virus (RSV) infection. Infection of lung epithelial cell lines or primary small-airway epithelial cells led to an increase in labile zinc pools, which was due to increased uptake of zinc. Zinc supplementation inhibited RSV replication, whereas zinc chelation had an opposing effect, leading to increases in RSV titers. Increases in labile zinc in RSV-infected cells coincided with induction of reactive oxygen species (ROS). Both zinc depletion and addition of exogenous ROS led to enhanced RSV infection, whereas addition of the antioxidant inhibited RSV, suggesting that zinc is part of an interplay between RSV-induced oxidative stress and the host response to maintain redox balance.
Collapse
|
6
|
Beyond Heat Stress: Intestinal Integrity Disruption and Mechanism-Based Intervention Strategies. Nutrients 2020; 12:nu12030734. [PMID: 32168808 PMCID: PMC7146479 DOI: 10.3390/nu12030734] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current climate changes have increased the prevalence and intensity of heat stress (HS) conditions. One of the initial consequences of HS is the impairment of the intestinal epithelial barrier integrity due to hyperthermia and hypoxia following blood repartition, which often results in a leaky gut followed by penetration and transfer of luminal antigens, endotoxins, and pathogenic bacteria. Under extreme conditions, HS may culminate in the onset of “heat stroke”, a potential lethal condition if remaining untreated. HS-induced alterations of the gastrointestinal epithelium, which is associated with a leaky gut, are due to cellular oxidative stress, disruption of intestinal integrity, and increased production of pro-inflammatory cytokines. This review summarizes the possible resilience mechanisms based on in vitro and in vivo data and the potential interventions with a group of nutritional supplements, which may increase the resilience to HS-induced intestinal integrity disruption and maintain intestinal homeostasis.
Collapse
|
7
|
Li JN, Zhang Z, Wu GZ, Yao DB, Cui SS. Claudin-15 overexpression inhibits proliferation and promotes apoptosis of Schwann cells in vitro. Neural Regen Res 2020; 15:169-177. [PMID: 31535666 PMCID: PMC6862392 DOI: 10.4103/1673-5374.264463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Our previous experiments have discovered that Claudin-15 was up-regulated in Schwann cells of the distal nerve stumps of rat models of sciatic nerve injury. However, how Claudin-15 affects Schwann cell function is still unknown. This study aimed to identify the effects of Claudin-15 on proliferation and apoptosis of Schwann cells cultured in vitro and explore the underlying mechanisms. Primary Schwann cells were obtained from rats. Claudin-15 in Schwann cells was knocked down using siRNA (siRNA-1 group) compared with the negative control siRNA transfection group (negative control group). Claudin-15 in Schwann cells was overexpressed using pGV230-Claudin-15 plasmid (pGV230-Claudin-15 group). The pGV230 transfection group (pGV230 group) acted as the control of the pGV230-Claudin-15 group. Cell proliferation was analyzed with EdU assay. Cell apoptosis was analyzed with flow cytometric analysis. Cell migration was analyzed with Transwell inserts. The mRNA and protein expressions were analyzed with quantitative polymerase chain reaction assay and western blot assay. The results showed that compared with the negative control group, cell proliferation rate was up-regulated; p-AKT/AKT ratio, apoptotic rate, p-c-Jun/c-Jun ratio, mRNA expression of protein kinase C alpha, Bcl-2 and Bax were down-regulated; and mRNA expression of neurotrophins basic fibroblast growth factor and neurotrophin-3 were increased in the siRNA-1 group. No significant difference was found in cell migration between the negative control and siRNA-1 groups. Compared with the pGV230 group, the cell proliferation rate was down-regulated; apoptotic rate, p-c-Jun/c-Jun ratio and c-Fos protein expression increased; mRNA expression of protein kinase C alpha and Bax decreased; and mRNA expressions of neurotrophins basic fibroblast growth factor and neurotrophin-3 were up-regulated in the pGV230-Claudin-15 group. The above results demonstrated that overexpression of Claudin-15 inhibited Schwann cell proliferation and promoted Schwann cell apoptosis in vitro. Silencing of Claudin-15 had the reverse effect and provided neuroprotective effect. This study was approved by the Experimental Animal Ethics Committee of Jilin University of China (approval No. 2016-nsfc001) on March 5, 2016.
Collapse
Affiliation(s)
- Jian-Nan Li
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Zhan Zhang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Guang-Zhi Wu
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Deng-Bing Yao
- School of Life Sciences, Jiangsu Key Laboratory of Neuroregeneration, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Shu-Sen Cui
- China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Yang W, Feng B, Meng Y, Wang J, Geng B, Cui Q, Zhang H, Yang Y, Yang J. FAM3C-YY1 axis is essential for TGFβ-promoted proliferation and migration of human breast cancer MDA-MB-231 cells via the activation of HSF1. J Cell Mol Med 2019; 23:3464-3475. [PMID: 30887707 PMCID: PMC6484506 DOI: 10.1111/jcmm.14243] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 11/22/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022] Open
Abstract
Family with sequence similarity three member C (FAM3C) (interleukin‐like EMT inducer [ILEI]), heat shock factor 1 (HSF1) and Ying‐Yang 1 (YY1) have been independently reported to be involved in the pathogenesis of various cancers. However, whether they are coordinated to trigger the development of cancer remains unknown. This study determined the role and mechanism of YY1 and HSF1 in FAM3C‐induced proliferation and migration of breast cancer cells. In human MDA‐MB‐231 breast cancer cell line, transforming growth factor‐β (TGFβ) up‐regulated FAM3C, HSF1 and YY1 expressions. FAM3C overexpression promoted the proliferation and migration of MDA‐MB‐231 cells with YY1 and HSF1 up‐regulation, whereas FAM3C silencing exerted the opposite effects. FAM3C inhibition repressed TGFβ‐induced HSF1 activation, and proliferation and migration of breast cancer cells. YY1 was shown to directly activate HSF1 transcription to promote the proliferation and migration of breast cancer cells. YY1 silencing blunted FAM3C‐ and TGFβ‐triggered activation of HSF1‐Akt‐Cyclin D1 pathway, and proliferation and migration of breast cancer cells. Inhibition of HSF1 blocked TGFβ‐, FAM3C‐ and YY1‐induced proliferation and migration of breast cancer cells. YY1 and HSF1 had little effect on FAM3C expression. Similarly, inhibition of HSF1 also blunted FAM3C‐ and TGFβ‐promoted proliferation and migration of human breast cancer BT‐549 cells. In human breast cancer tissues, FAM3C, YY1 and HSF1 protein expressions were increased. In conclusion, FAM3C activated YY1‐HSF1 signalling axis to promote the proliferation and migration of breast cancer cells. Furthermore, novel FAM3C‐YY1‐HSF1 pathway plays an important role in TGFβ‐triggered proliferation and migration of human breast cancer MDA‐MB‐231 cells.
Collapse
Affiliation(s)
- Weili Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Biaoqi Feng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Yuhong Meng
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Junpei Wang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China.,Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Bin Geng
- State Key Laboratory of Cardiovascular Disease, Hypertension Center, Fuwai Hospital, Peking University Health Science Center, CAMS & PUMC, Beijing, China
| | - Qinghua Cui
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Biomedical Informatics, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| | - Hongquan Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, China
| | - Yang Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jichun Yang
- Key Laboratory of Molecular Cardiovascular Sciences of the Ministry of Education, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, China
| |
Collapse
|