1
|
Ansari AS, Kucharski C, Kc R, Nisakar D, Rahim R, Jiang X, Brandwein J, Uludağ H. Lipopolymer/siRNA complexes engineered for optimal molecular and functional response with chemotherapy in FLT3-mutated acute myeloid leukemia. Acta Biomater 2024; 188:297-314. [PMID: 39236794 DOI: 10.1016/j.actbio.2024.08.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Approximately 25% of newly diagnosed AML patients display an internal tandem duplication (ITD) in the fms-like tyrosine kinase 3 (FLT3) gene. Although both multi-targeted and FLT3 specific tyrosine kinase inhibitors (TKIs) are being utilized for clinical therapy, drug resistance, short remission periods, and high relapse rates are challenges that still need to be tackled. RNA interference (RNAi), mediated by short interfering RNA (siRNA), presents a mechanistically distinct therapeutic platform with the potential of personalization due to its gene sequence-driven mechanism of action. This study explored the use of a non-viral approach for delivery of FLT3 siRNA (siFLT3) in FLT3-ITD positive AML cell lines and primary cells as well as the feasibility of combining this treatment with drugs currently used in the clinic. Treatment of AML cell lines with FLT3 siRNA nanocomplexes resulted in prominent reduction in cell proliferation rates and induction of apoptosis. Quantitative analysis of relative mRNA transcript levels revealed downregulation of the FLT3 gene, which was accompanied by a similar decline in FLT3 protein levels. Moreover, an impact on leukemic stem cells was observed in a small pool of primary AML samples through significantly reduced colony numbers. An absence of a molecular response post-treatment with lipopolymer/siFLT3 complexes in peripheral blood mononuclear cells, obtained from healthy individuals, denoted a passive selectivity of the complexes towards malignant cells. The effect of combining lipopolymer/siFLT3 complexes with daunorubucin and FLT3 targeting TKI gilteritinib led to a significant augmentation of anti-leukemic activity. These findings demonstrate the promising potential of RNAi implemented with lipopolymer complexes for AML molecular therapy. The study prospectively supports the addition of RNAi therapy to current treatment modalities available to target the heterogeneity prevalent in AML. STATEMENT OF SIGNIFICANCE: We show that a clinically validated target, the FLT3 gene, can be eradicated in leukemia cells using non-viral RNAi. We validated these lipopolymers as effective vehicles to deliver nucleic acids to leukemic cells. The potency of the lipopolymers was superior to that of the 'gold-standard' delivery agent, lipid nanoparticles (LNPs), which are not effective in leukemia cells at clinically relevant doses. Mechanistic studies were undertaken to probe structure-function relationships for effective biomaterial formulations. Cellular and molecular responses to siRNA treatment have been characterized in cell models, including leukemia patient-derived cells. The use of the siRNA therapy with clinically used chemotherapy was demonstrated.
Collapse
MESH Headings
- Humans
- fms-Like Tyrosine Kinase 3/genetics
- fms-Like Tyrosine Kinase 3/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/therapy
- RNA, Small Interfering/pharmacology
- Cell Line, Tumor
- Mutation/genetics
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Polymers/chemistry
- Polymers/pharmacology
- Aniline Compounds
- Pyrazines
Collapse
Affiliation(s)
- Aysha S Ansari
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Cezary Kucharski
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Remant Kc
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel Nisakar
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Ramea Rahim
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Xiaoyan Jiang
- Terry Fox Laboratory, BC Cancer Research Institute and Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Joseph Brandwein
- Division of Hematology, Department of Medicine, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Hasan Uludağ
- Department of Chemical and Materials Engineering, Faculty of Engineering, University of Alberta, Edmonton, Alberta, Canada; Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Jin W, Dai Y, Chen L, Zhu H, Dong F, Zhu H, Meng G, Li J, Chen S, Chen Z, Fang H, Wang K. Cellular hierarchy insights reveal leukemic stem-like cells and early death risk in acute promyelocytic leukemia. Nat Commun 2024; 15:1423. [PMID: 38365836 PMCID: PMC10873341 DOI: 10.1038/s41467-024-45737-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 02/02/2024] [Indexed: 02/18/2024] Open
Abstract
Acute promyelocytic leukemia (APL) represents a paradigm for targeted differentiation therapy, with a minority of patients experiencing treatment failure and even early death. We here report a comprehensive single-cell analysis of 16 APL patients, uncovering cellular compositions and their impact on all-trans retinoic acid (ATRA) response in vivo and early death. We unveil a cellular differentiation hierarchy within APL blasts, rooted in leukemic stem-like cells. The oncogenic PML/RARα fusion protein exerts branch-specific regulation in the APL trajectory, including stem-like cells. APL cohort analysis establishes an association of leukemic stemness with elevated white blood cell counts and FLT3-ITD mutations. Furthermore, we construct an APL-specific stemness score, which proves effective in assessing early death risk. Finally, we show that ATRA induces differentiation of primitive blasts and patients with early death exhibit distinct stemness-associated transcriptional programs. Our work provides a thorough survey of APL cellular hierarchies, offering insights into cellular dynamics during targeted therapy.
Collapse
Affiliation(s)
- Wen Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Li Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Honghu Zhu
- Department of Hematology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Fangyi Dong
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guoyu Meng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Saijuan Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhu Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Kankan Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
3
|
Asees MY, Shrateh ON, Assi AS, Habbabeh M, Shiha HO, Shakhsheer S. Infantile B-cell acute lymphoblastic leukaemia with the highest recorded count of white blood cells in the literature: case report and literature review. Ann Med Surg (Lond) 2023; 85:6294-6297. [PMID: 38098549 PMCID: PMC10718326 DOI: 10.1097/ms9.0000000000001476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/26/2023] [Indexed: 12/17/2023] Open
Abstract
Introduction Infantile leukaemia is an uncommon haematological cancer that manifests within the first year of life. This malignancy is highly aggressive and possesses distinctive immunophenotypic, cytogenetic, and molecular attributes. It can originate from either myeloid or lymphoid cells. It often exhibits a higher incidence among females. Case presentation A 1-month-old male infant, initially seemingly healthy, presented with irritability and feeding difficulties. Born without complications, routine neonatal assessments appeared normal, and physical examination revealed no abnormalities. However, laboratory tests indicated an extremely high white blood cell count, low platelets, and elevated haemoglobin. Further examinations showed a white blood cell count of 1450 × 106/l with a blood film revealing significant leukocytosis dominated by blast cells. Abdominal ultrasound confirmed hepatosplenomegaly which was not present during pregnancy. Subsequent bone marrow analysis and flow cytometry established a diagnosis of B-cell acute lymphoblastic leukaemia (B-ALL). Clinical discussion It is rare for infantile ALL to manifest within the first month after birth. In most cases, the diagnosis is established before birth. When characteristic signs such as hepatosplenomegaly, leukaemia cutis, or infiltrative involvement of the extramedullary and central nervous systems are present, postnatal diagnoses are relatively straightforward. However, there are instances where children present with non-specific and ambiguous symptoms that resemble other medical conditions. Conclusion This case underscores the importance of paediatricians being vigilant and attuned to the subtle indicators that differentiate common illnesses from serious conditions such as infantile ALL.
Collapse
Affiliation(s)
- Mohammad Y. Asees
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Oadi N. Shrateh
- Faculty of Medicine, Al-Quds University, Jerusalem, Palestine
| | - Ayuob S. Assi
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Maysaa Habbabeh
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Haneen Omar Shiha
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| | - Shurouq Shakhsheer
- Professional Medical Laboratories, Department of Clinical chemistry and Hematology, Ramallah
| |
Collapse
|
4
|
Ali AM, Salih GF. Molecular and clinical significance of FLT3, NPM1, DNMT3A and TP53 mutations in acute myeloid leukemia patients. Mol Biol Rep 2023; 50:8035-8048. [PMID: 37540457 DOI: 10.1007/s11033-023-08680-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/14/2023] [Indexed: 08/05/2023]
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a type of blood cancer that affects the bone marrow and blood cells. AML is characterized by the rapid growth and accumulation of abnormal white blood cells, known as myeloblasts, which interfere with the production of normal blood cells. AIMS The main aim was to determine the relationship between these genetic alterations and the clinico-haematological parameters and prognostic factors with therapy for Iraqi patients with AML. METHODS We used Sanger Sequencing to detect the mutations in 76 AML patients. Clinical data of AML patients were retrospectively analysed to compare the prognosis of each gene mutation group. RESULTS Somatic mutations were identified in 47.4% of the enrolled patients in a core set of pathogenic genes, including FLT3 (18 patients, 23.7%), DNMT3A (14, 18.4%), NPM1 (11, 14.5%) and TP53 (5, 6.8%). As multiple mutations frequently coexisted in the same patient, we classified patients into 10 further groups. Two novel mutations were detected in FLT3-ITD, with new accession numbers deposited into NCBI GenBank (OP807465 and OP807466). These two novel mutations were computationally analysed and predicted as disease-causing mutations. We found significant differences between patients with and without the detected mutations in disease progression after induction therapy (remission, failure and death; pv = < 0.001) and statistically significant differences were reported in total leukocyte count (pv = < 0.0001). CONCLUSION These genes are among the most frequently mutated genes in AML patients. Understanding the molecular and clinical significance of these mutations is important for guiding treatment decisions and predicting patient outcomes.
Collapse
Affiliation(s)
- Ayad M Ali
- Department of Chemistry, College of Science, University of Garmian, Kalar, Iraq.
| | - Gaza F Salih
- Department of Biology, College of Science, University of Sulaimani, Sulaymaniyah, Iraq
| |
Collapse
|
5
|
Casirati G, Cosentino A, Mucci A, Salah Mahmoud M, Ugarte Zabala I, Zeng J, Ficarro SB, Klatt D, Brendel C, Rambaldi A, Ritz J, Marto JA, Pellin D, Bauer DE, Armstrong SA, Genovese P. Epitope editing enables targeted immunotherapy of acute myeloid leukaemia. Nature 2023; 621:404-414. [PMID: 37648862 PMCID: PMC10499609 DOI: 10.1038/s41586-023-06496-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.
Collapse
Affiliation(s)
- Gabriele Casirati
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Milano-Bicocca University, Milan, Italy
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Andrea Cosentino
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Adele Mucci
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Mohammed Salah Mahmoud
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Zoology Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Iratxe Ugarte Zabala
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Denise Klatt
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
| | - Christian Brendel
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Alessandro Rambaldi
- Department of Oncology and Hematology, University of Milan and Azienda Socio-Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Jerome Ritz
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Connell and O'Reilly Families Cell Manipulation Core Facility, Dana-Farber Cancer Institute, Boston, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA
- Center for Emergent Drug Targets, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Danilo Pellin
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Scott A Armstrong
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA
- Harvard Medical School, Boston, MA, USA
| | - Pietro Genovese
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Mansoor N, Imran S, Maqsood S, Pasha S, Jabbar N. Infantile B-lymphoblastic leukemia: a case series and review of the literature. J Int Med Res 2023; 51:3000605231167789. [PMID: 37066443 PMCID: PMC10127210 DOI: 10.1177/03000605231167789] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/17/2023] [Indexed: 04/18/2023] Open
Abstract
Infantile leukemia is a rare hematological malignancy that occurs in the first year of life. It is an aggressive disease with peculiar immunophenotypic, cytogenetic, and molecular characteristics. It can be myeloid or lymphoid in origin. More than 80% of cases involve KMT2A gene rearrangement in the lymphoblastic subset, versus 50% in the myeloid subset. In this study, we present three cases of this rare entity to add knowledge about its clinical presentation and diagnostic profiles. These cases of infantile B-lymphoblastic leukemia (B-ALL) were retrospectively reviewed at the Department of Hematology, Section Cytogenetics at Indus Hospital and Health Network. The clinical characteristics, complete diagnostic profile, immunophenotypic profile, fluorescence in situ hybridization (FISH) results, treatments, and outcomes of the patients were assessed. All three infants were girls who presented with hyperleukocytosis, and they were diagnosed by eight-color flow cytometry. FISH studies revealed KMT2A gene rearrangement in two of the three patients. Infantile B-ALL is a biologically distinct disease carrying a poor prognosis. Female preponderance, hyperleukocytosis, and hepatosplenomegaly are common findings in this subgroup. No standard protocol for this rare entity has proven ideal for managing these young infants.
Collapse
Affiliation(s)
- Neelum Mansoor
- Department of Hematology & Blood Center, Indus Hospital & Health Network, Karachi, Pakistan
| | - Sadia Imran
- Department of Pediatric Oncology, Indus Hospital & Health Network, Karachi, Pakistan
| | - Sidra Maqsood
- Indus Hospital Research Centre, Indus Hospital & Health Network, Karachi, Pakistan
| | - Shadab Pasha
- Department of Hematology & Blood Center, Indus Hospital & Health Network, Karachi, Pakistan
| | - Naeem Jabbar
- Department of Hematology & Blood Center, Indus Hospital & Health Network, Karachi, Pakistan
| |
Collapse
|
7
|
Tsuzuki H, Kawase T, Nakazawa T, Mori M, Yoshida T. Anti-tumor effect of antibody drug conjugate ASP1235 targeting Fms-like tyrosine kinase 3 with venetoclax plus azacitidine in an acute myeloid leukemia xenograft mouse model. Oncotarget 2022; 13:1359-1368. [PMID: 36537913 PMCID: PMC9765856 DOI: 10.18632/oncotarget.28331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antibody drug conjugates (ADC) are one of the attractive modalities for the treatment of acute myeloid leukemia (AML). Previously, we have developed ASP1235, a novel ADC targeting Fms-like tyrosine kinase 3 (FLT3) which is widely expressed on the leukemic blasts of AML patients. In this study, we sought to evaluate the therapeutic effect of ASP1235 in combination with venetoclax plus azacitidine, a novel standard-of-care treatment for elderly AML patients, in ASP1235 poor sensitive AML cells. To identify the suitable preclinical model, we first evaluated the growth inhibitory effect of ASP1235 on several leukemia cell lines expressing FLT3 and found that THP-1 cells were partially sensitive to ASP1235 in vitro. Furthermore, ASP1235 showed marginal anti-tumor activity in a THP-1 xenograft model. Compared to the leukemic blasts in most of the relapsed or refractory (R/R) AML patients tested, THP-1 cells expressed equivalent protein levels of Bcl-2, suggesting that ASP1235 in combination with venetoclax plus azacitidine is a rational treatment in the THP-1 model. In vitro, ASP1235 showed a cytotoxic effect on THP-1 cells in combination with venetoclax, and the combination effect was greater than the additive effect. Furthermore, ASP1235 also showed a combination effect with venetoclax plus azacitidine treatment. Similarly, the combination of ASP1235, venetoclax and azacitidine showed a superior anti-tumor effect in a THP-1 xenograft model without obvious body weight loss. These findings provide supportive evidence that the triple combination of ASP1235, venetoclax and azacitidine would improve the clinical outcome of ASP1235 monotherapy and venetoclax plus azacitidine regimen in AML patients.
Collapse
Affiliation(s)
- Hirofumi Tsuzuki
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan,Correspondence to:Hirofumi Tsuzuki, email:
| | - Tatsuya Kawase
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Taisuke Nakazawa
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Masamichi Mori
- 2Applied Research and Operations, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| | - Taku Yoshida
- 1Immuno-Oncology, Astellas Pharma Inc., Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
8
|
Schorr C, Perna F. Targets for chimeric antigen receptor T-cell therapy of acute myeloid leukemia. Front Immunol 2022; 13:1085978. [PMID: 36605213 PMCID: PMC9809466 DOI: 10.3389/fimmu.2022.1085978] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Acute Myeloid Leukemia (AML) is an aggressive myeloid malignancy associated with high mortality rates (less than 30% 5-year survival). Despite advances in our understanding of the molecular mechanisms underpinning leukemogenesis, standard-of-care therapeutic approaches have not changed over the last couple of decades. Chimeric Antigen Receptor (CAR) T-cell therapy targeting CD19 has shown remarkable clinical outcomes for patients with acute lymphoblastic leukemia (ALL) and is now an FDA-approved therapy. Targeting of myeloid malignancies that are CD19-negative with this promising technology remains challenging largely due to lack of alternate target antigens, complex clonal heterogeneity, and the increased recognition of an immunosuppressive bone marrow. We carefully reviewed a comprehensive list of AML targets currently being used in both proof-of-concept pre-clinical and experimental clinical settings. We analyzed the expression profile of these molecules in leukemic as well normal tissues using reliable protein databases and data reported in the literature and we provide an updated overview of the current clinical trials with CAR T-cells in AML. Our study represents a state-of-art review of the field and serves as a potential guide for selecting known AML-associated targets for adoptive cellular therapies.
Collapse
Affiliation(s)
- Christopher Schorr
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,Department of Biomedical Engineering, Purdue University Weldon School of Biomedical Engineering, West Lafayette, IN, United States
| | - Fabiana Perna
- Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States,*Correspondence: Fabiana Perna,
| |
Collapse
|
9
|
Anwar Z, Ali MS, Galvano A, Perez A, La Mantia M, Bukhari I, Swiatczak B. PROTACs: The Future of Leukemia Therapeutics. Front Cell Dev Biol 2022; 10:851087. [PMID: 36120561 PMCID: PMC9479449 DOI: 10.3389/fcell.2022.851087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
The fight to find effective, long-lasting treatments for cancer has led many researchers to consider protein degrading entities. Recent developments in PROteolysis TArgeting Chimeras (PROTACs) have signified their potential as possible cancer therapies. PROTACs are small molecule, protein degraders that function by hijacking the built-in Ubiquitin-Proteasome pathway. This review mainly focuses on the general design and functioning of PROTACs as well as current advancements in the development of PROTACs as anticancer therapies. Particular emphasis is given to PROTACs designed against various types of Leukemia/Blood malignancies.
Collapse
Affiliation(s)
- Zubair Anwar
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
- *Correspondence: Zubair Anwar, ; Bartlomiej Swiatczak,
| | - Muhammad Shahzad Ali
- Department of Clinical and Biological Sciences, University of Turin, San Luigi Hospital, Turin, Italy
| | - Antonio Galvano
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
| | - Maria La Mantia
- Department of Surgical, Oncological, and Oral Sciences, Section of Medical Oncology, Uiniversity of Palermo, Palermo, Italy
| | - Ihtisham Bukhari
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
- *Correspondence: Zubair Anwar, ; Bartlomiej Swiatczak,
| |
Collapse
|
10
|
Yan L, Zhang Z, Liu Y, Ren S, Zhu Z, Wei L, Feng J, Duan T, Sun X, Xie T, Sui X. Anticancer Activity of Erianin: Cancer-Specific Target Prediction Based on Network Pharmacology. Front Mol Biosci 2022; 9:862932. [PMID: 35372513 PMCID: PMC8968680 DOI: 10.3389/fmolb.2022.862932] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/25/2022] [Indexed: 12/02/2022] Open
Abstract
Erianin is a major bisbenzyl compound extracted from Dendrobium chrysotoxum Lindl., an important traditional Chinese herb. In recent years, a growing body of evidence has proved the potential therapeutic effects of erianin on various cancers, including hepatoma, melanoma, non-small-cell lung carcinoma, myelogenous leukemia, breast cancer, and osteosarcoma. Especially, the pharmacological activities of erianin, such as antioxidant and anticancer activity, have been frequently demonstrated by plenty of studies. In this study, we firstly conducted a systematic review on reported anticancer activity of erianin. All updated valuable information regarding the underlying action mechanisms of erianin in specific cancer was recorded and summarized in this paper. Most importantly, based on the molecular structure of erianin, its potential molecular targets were analyzed and predicted by means of the SwissTargetPrediction online server (http://www.swisstargetprediction.ch). In the meantime, the potential therapeutic targets of 10 types of cancers in which erianin has been proved to have anticancer effects were also predicted via the Online Mendelian Inheritance in Man (OMIM) database (http://www.ncbi.nlm.nih.gov/omim). The overlapping targets may serve as valuable target candidates through which erianin exerts its anticancer activity. The clinical value of those targets was subsequently evaluated by analyzing their prognostic role in specific cancer using Kaplan-Meier plotter (http://Kmplot.com/analysis/) and Gene Expression Profiling Interactive Analysis (GEPIA) (http://gepia.cancer-pku.cn/). To better assess and verify the binding ability of erianin with its potential targets, molecular flexible docking was performed using Discovery Studio (DS). The valuable targets obtained from the above analysis and verification were further mapped to the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway using the Database for Annotation, Visualization and Integrated Discovery (DAVID) (http://david.abcc.ncifcrf.gov/) to explore the possible signaling pathways disturbed/regulated by erianin. Furthermore, the in silico prediction of absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of erianin was also performed and provided in this paper. Overall, in this study, we aimed at 1) collecting all experiment-based important information regarding the anticancer effect and pharmacological mechanism of erianin, 2) providing the predicted therapeutic targets and signaling pathways that erianin might act on in cancers, and 3) especially providing in silico ADMET properties of erianin.
Collapse
Affiliation(s)
- Lili Yan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhen Zhang
- Department of Orthopedic Surgery, Hangzhou Orthopedic Institute, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanfen Liu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Shuyi Ren
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Zhiyu Zhu
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Lu Wei
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Jiao Feng
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Ting Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
| | - Xueni Sun
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| | - Xinbing Sui
- School of Pharmacy, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, China
- *Correspondence: Xueni Sun, ; Tian Xie, ; Xinbing Sui,
| |
Collapse
|
11
|
Öztürk S, Paul Y, Afzal S, Gil-Farina I, Jauch A, Bruch PM, Kalter V, Hanna B, Arseni L, Roessner PM, Schmidt M, Stilgenbauer S, Dietrich S, Lichter P, Zapatka M, Seiffert M. Longitudinal analyses of CLL in mice identify leukemia-related clonal changes including a Myc gain predicting poor outcome in patients. Leukemia 2022; 36:464-475. [PMID: 34417556 PMCID: PMC8807396 DOI: 10.1038/s41375-021-01381-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023]
Abstract
Chronic lymphocytic leukemia (CLL) is a B-cell malignancy mainly occurring at an advanced age with no single major genetic driver. Transgenic expression of TCL1 in B cells leads after a long latency to a CLL-like disease in aged Eµ-TCL1 mice suggesting that TCL1 overexpression is not sufficient for full leukemic transformation. In search for secondary genetic events and to elucidate the clonal evolution of CLL, we performed whole exome and B-cell receptor sequencing of longitudinal leukemia samples of Eµ-TCL1 mice. We observed a B-cell receptor stereotypy, as described in patients, confirming that CLL is an antigen-driven disease. Deep sequencing showed that leukemia in Eµ-TCL1 mice is mostly monoclonal. Rare oligoclonality was associated with inability of tumors to develop disease upon adoptive transfer in mice. In addition, we identified clonal changes and a sequential acquisition of mutations with known relevance in CLL, which highlights the genetic similarities and therefore, suitability of the Eµ-TCL1 mouse model for progressive CLL. Among them, a recurrent gain of chromosome 15, where Myc is located, was identified in almost all tumors in Eµ-TCL1 mice. Interestingly, amplification of 8q24, the chromosomal region containing MYC in humans, was associated with worse outcome of patients with CLL.
Collapse
Affiliation(s)
- Selcen Öztürk
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yashna Paul
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Saira Afzal
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Irene Gil-Farina
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | - Anna Jauch
- Institute of Human Genetics, University of Heidelberg, Heidelberg, Germany
| | - Peter-Martin Bruch
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Verena Kalter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bola Hanna
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lavinia Arseni
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philipp M Roessner
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Manfred Schmidt
- Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
- GeneWerk GmbH, Heidelberg, Germany
| | | | - Sascha Dietrich
- Department of Medicine V, Hematology, Oncology and Rheumatology, University of Heidelberg, Heidelberg, Germany
| | - Peter Lichter
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martina Seiffert
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
12
|
Kim HD, Park EJ, Choi EK, Song SY, Hoe KL, Kim DU. G-749 Promotes Receptor Tyrosine Kinase TYRO3 Degradation and Induces Apoptosis in Both Colon Cancer Cell Lines and Xenograft Mouse Models. Front Pharmacol 2021; 12:730241. [PMID: 34721022 PMCID: PMC8551583 DOI: 10.3389/fphar.2021.730241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/27/2021] [Indexed: 01/15/2023] Open
Abstract
G-749 is an FLT3 kinase inhibitor that was originally developed as a treatment for acute myeloid leukemia. Some FLT3 kinase inhibitors are dual kinase inhibitors that inhibit the TAM (Tyro3, Axl, Mer) receptor tyrosine kinase family and are used to treat solid cancers such as non-small cell lung cancer (NSCLC) and triple-negative breast cancer (TNBC). AXL promotes metastasis, suppression of immune response, and drug resistance in NSCLC and TNBC. G-749, a potential TAM receptor tyrosine kinase inhibitor, and its derivative SKI-G-801, effectively inhibits the phosphorylation of AXL at nanomolar concentration (IC50 = 20 nM). This study aimed to investigate the anticancer effects of G-749 targeting the TAM receptor tyrosine kinase in colon cancer. Here, we demonstrate the potential of G-749 to effectively inhibit tumorigenesis by degrading TYRO3 via regulated intramembrane proteolysis both in vitro and in vivo. In addition, we demonstrated that G-749 inhibits the signaling pathway associated with cell proliferation in colon cancer cell lines HCT15 and SW620, as well as tumor xenograft mouse models. We propose G-749 as a new therapeutic agent for the treatment of colon cancer caused by abnormal TYRO3 expression or activity.
Collapse
Affiliation(s)
- Hae Dong Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Department of New Drug Development, Chungnam National University, Daejeon, South Korea
| | - Eun Jung Park
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Application Strategy and Development Division, GeneChem Inc., Daejeon, South Korea
| | - Eun Kyoung Choi
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Seuk Young Song
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| | - Kwang-Lae Hoe
- Department of New Drug Development, Chungnam National University, Daejeon, South Korea
| | - Dong-Uk Kim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
| |
Collapse
|
13
|
13q12.2 deletions and FLT3 overexpression in acute leukemias. Blood Adv 2021; 5:2075-2078. [PMID: 33877294 DOI: 10.1182/bloodadvances.2020003643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 03/19/2021] [Indexed: 11/20/2022] Open
|
14
|
Jiang D, He Y, Mo Q, Liu E, Li X, Huang L, Zhang Q, Chen F, Li Y, Shao H. PRICKLE1, a Wnt/PCP signaling component, is overexpressed and associated with inferior prognosis in acute myeloid leukemia. J Transl Med 2021; 19:211. [PMID: 34001134 PMCID: PMC8130533 DOI: 10.1186/s12967-021-02873-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/03/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Prickle planar cell polarity protein 1 (PRICKLE1), a core component of the non-canonical Wnt/planar cell polarity (PCP) pathway, was recently reported to be upregulated and correlated with poor prognosis in solid cancers. However, the effect of PRICKLE1 on acute myeloid leukemia (AML) remains unknown. This study aims to characterize the prognostic significance of PRICKLE1 expression in patients with AML. METHODS RNA-seq was performed to compare mRNA expression profiles of AML patients and healthy controls. qRT-PCR and western blotting were used to analyze the expression of PRICKLE1 in AML patients and cell lines, and two independent datasets (TCGA-LAML and TARGET-AML) online were used to validate the expression results. The correlations between the expression of PRICKLE1 and clinical features were further analyzed. RESULTS Our data showed that PRICKLE1 expression levels were markedly high in AML patients at the time of diagnosis, decreased after complete remission and increased again at relapse. Of note, PRICKLE1 was highly expressed in drug resistant AML cells and monocytic-AML patients. High PRICKLE1 expression was found in FLT3/DNMT3A/IDH1/IDH2-mutant AML and associated with poor prognosis. Furthermore, high expression of PRICKLE1 may be correlated with migration and invasion components upregulation in AML patients. CONCLUSIONS These results indicated that high PRICKLE1 expression may be a poor prognostic biomarker and therapeutic target of AML.
Collapse
Affiliation(s)
- Duanfeng Jiang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyu Mo
- Department of Hematology, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China
| | - Enyi Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xin Li
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lihua Huang
- Center for Medical Experiments, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qin Zhang
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangping Chen
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yan Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Haigang Shao
- Department of Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
Abstract
Aberrant FLT3 receptor signaling is common in acute myeloid leukemia (AML) and has important implications for the biology and clinical management of the disease. Patients with FLT3-mutated AML frequently present with critical illness, are more likely to relapse after treatment, and have worse clinical outcomes than their FLT3 wild type counterparts. The clinical management of FLT3-mutated AML has been transformed by the development of FLT3 inhibitors, which are now in use in the frontline and relapsed/refractory settings. However, many questions regarding the optimal approach to the treatment of these patients remain. In this paper, we will review the rationale for targeting the FLT3 receptor in AML, the impact of FLT3 mutation on patient prognosis, the current standard of care approaches to FLT3-mutated AML management, and the diverse array of FLT3 inhibitors in use and under investigation. We will also explore new opportunities and strategies for targeting the FLT3 receptor. These include targeting the receptor in patients with non-canonical FLT3 mutations or wild type FLT3, pairing FLT3 inhibitors with other novel therapies, using minimal residual disease (MRD) testing to guide the targeting of FLT3, and novel immunotherapeutic approaches.
Collapse
Affiliation(s)
- Alexander J Ambinder
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mark Levis
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
16
|
Imidazopyridine hydrazone derivatives exert antiproliferative effect on lung and pancreatic cancer cells and potentially inhibit receptor tyrosine kinases including c-Met. Sci Rep 2021; 11:3644. [PMID: 33574356 PMCID: PMC7878917 DOI: 10.1038/s41598-021-83069-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Aberrant activation of c-Met signalling plays a prominent role in cancer development and progression. A series of 12 imidazo [1,2-α] pyridine derivatives bearing 1,2,3-triazole moiety were designed, synthesized and evaluated for c-Met inhibitory potential and anticancer effect. The inhibitory activity of all synthesized compounds against c-Met kinase was evaluated by a homogeneous time-resolved fluorescence (HTRF) assay at the concentration range of 5-25 µM. Derivatives 6d, 6e and 6f bearing methyl, tertiary butyl and dichloro-phenyl moieties on the triazole ring, respectively, were the compounds with the highest potential. They significantly inhibited c-Met by 55.3, 53.0 and 51.3%, respectively, at the concentration of 25 µM. Synthetic compounds showed antiproliferative effects against lung (EBC-1) and pancreatic cancer cells (AsPc-1, Suit-2 and Mia-PaCa-2) expressing different levels of c-Met, with IC50 values as low as 3.0 µM measured by sulforhodamine B assay. Active derivatives significantly blocked c-Met phosphorylation, inhibited cell growth in three-dimensional spheroid cultures and also induced apoptosis as revealed by Annexin V/propidium iodide flow cytometric assay in AsPc-1 cells. They also inhibited PDGFRA and FLT3 at 25 µM among a panel of 16 kinases. Molecular docking and dynamics simulation studies corroborated the experimental findings and revealed possible binding modes of the select derivatives with target receptor tyrosine kinases. The results of this study show that some imidazopyridine derivatives bearing 1,2,3-triazole moiety could be promising molecularly targeted anticancer agents against lung and pancreatic cancers.
Collapse
|
17
|
Parenti S, Rontauroli S, Carretta C, Mallia S, Genovese E, Chiereghin C, Peano C, Tavernari L, Bianchi E, Fantini S, Sartini S, Romano O, Bicciato S, Tagliafico E, Della Porta M, Manfredini R. Mutated clones driving leukemic transformation are already detectable at the single-cell level in CD34-positive cells in the chronic phase of primary myelofibrosis. NPJ Precis Oncol 2021; 5:4. [PMID: 33542466 PMCID: PMC7862275 DOI: 10.1038/s41698-021-00144-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Disease progression of myeloproliferative neoplasms is the result of increased genomic complexity. Since the ability to predict disease evolution is crucial for clinical decisions, we studied single-cell genomics and transcriptomics of CD34-positive cells from a primary myelofibrosis (PMF) patient who progressed to acute myeloid leukemia (AML) while receiving Ruxolitinib. Single-cell genomics allowed the reconstruction of clonal hierarchy and demonstrated that TET2 was the first mutated gene while FLT3 was the last one. Disease evolution was accompanied by increased clonal heterogeneity and mutational rate, but clones carrying TP53 and FLT3 mutations were already present in the chronic phase. Single-cell transcriptomics unraveled repression of interferon signaling suggesting an immunosuppressive effect exerted by Ruxolitinib. Moreover, AML transformation was associated with a differentiative block and immune escape. These results suggest that single-cell analysis can unmask tumor heterogeneity and provide meaningful insights about PMF progression that might guide personalized therapy.
Collapse
Affiliation(s)
- Sandra Parenti
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastiano Rontauroli
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Carretta
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Selene Mallia
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elena Genovese
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Chiereghin
- Humanitas Clinical and Research Center - IRCCS, Rozzano - Milan, Italy
| | - Clelia Peano
- Humanitas Clinical and Research Center - IRCCS, Rozzano - Milan, Italy
- Institute of Genetic and Biomedical Research, National Research Council, Rozzano - Milan, Italy
| | - Lara Tavernari
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sebastian Fantini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Stefano Sartini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Oriana Romano
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Silvio Bicciato
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
| | - Enrico Tagliafico
- Center for Genome Research, University of Modena and Reggio Emilia, Modena, Italy
- Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Matteo Della Porta
- Humanitas Clinical and Research Center - IRCCS, Rozzano - Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele - Milan, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "S. Ferrari", Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
18
|
Abdellateif MS, Kassem AB, El-Meligui YM. Combined Expression of CD34 and FLT3-Internal Tandem Duplication Mutation Predicts Poor Response to Treatment in Acute Myeloid Leukemia. Int J Gen Med 2020; 13:867-879. [PMID: 33116779 PMCID: PMC7584508 DOI: 10.2147/ijgm.s276138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/14/2020] [Indexed: 11/23/2022] Open
Abstract
Background Acute myeloid leukemia (AML) is a common hematological malignancy associated with different cytogenetic and genetic abnormalities. Methods FLT3-internal tandem duplication (FLT3/ITD) mutation and CD34 expression levels were assessed in the bone marrow (BM) aspirates of 153 de novo AML patients. Data were correlated with relevant clinic-pathological features of the patients, response to treatment, disease-free survival (DFS), and overall free survival (OS) rates. Results FLT3-ITD mutation was detected in 27/153 (17.6%) AML patients (P=0.001), and CD34 was expressed in 83/153 (54.2%) patients (P=0.293) compared to those with wild FLT3 and CD34− expression, respectively. Patients with FLT3-ITD mutation showed increased peripheral blood and BM blast cells, abnormal cytogenetics, poor DFS and OS compared to those with wild FLT3 (P=0.013, P<0.001, P=0.010, P=0.008 and P=0.004, respectively), while there was no significant association with response to treatment (P=0.081). There was no significant association between CD34 expression and response to treatment, DFS, and OS (P>0.05). FLT3-ITD mutation and FAB subtypes were independent prognostic factors for DFS. Older age ≥39 years, HB <7 mg/dL PB blast ≥54%, and FLT3-ITD mutation were independent prognostic factors for poor OS in AML patients. The presence of both FLT3-ITD mutation and CD34 expression associated significantly with resistance to therapy (P=0.024), short DFS and OS rates (P=0.006, P=0.037, respectively). Conclusion Combined expression of both FLT3-ITD mutation and CD34 expression is an important prognostic and predictive factor for poor disease outcome in AML patients.
Collapse
Affiliation(s)
- Mona S Abdellateif
- Medical Biochemistry and Molecular Biology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Amira B Kassem
- Clinical Pharmacy and Pharmacy Practice Department, Faculty of Pharmacy, Damanhour University, Damanhur, Egypt
| | - Yomna M El-Meligui
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Singh N, Huang L, Wang DB, Shao N, Zhang XE. Simultaneous Detection of a Cluster of Differentiation Markers on Leukemia-Derived Exosomes by Multiplex Immuno-Polymerase Chain Reaction via Capillary Electrophoresis Analysis. Anal Chem 2020; 92:10569-10577. [DOI: 10.1021/acs.analchem.0c01464] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Netrapal Singh
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- CAS Center for Biological Macromolecules, National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Lin Huang
- CAS Center for Biological Macromolecules, National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Dian-Bing Wang
- CAS Center for Biological Macromolecules, National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Nan Shao
- CAS Center for Biological Macromolecules, National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
| | - Xian-En Zhang
- Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China
- CAS Center for Biological Macromolecules, National Key Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
20
|
Xiong Q, Huang S, Li YH, Lv N, Lv C, Ding Y, Liu WW, Wang LL, Chen Y, Sun L, Zhao Y, Liao SY, Zhang MQ, Zhu BL, Yu L. Single‑cell RNA sequencing of t(8;21) acute myeloid leukemia for risk prediction. Oncol Rep 2020; 43:1278-1288. [PMID: 32323795 PMCID: PMC7057921 DOI: 10.3892/or.2020.7507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/22/2020] [Indexed: 12/12/2022] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) of bone marrow or peripheral blood samples from patients with acute myeloid leukemia (AML) enables the characterization of heterogeneous malignant cells. A total of 87 cells from two patients with t(8;21) AML were analyzed using scRNA-seq. Clustering methods were used to separate leukemia cells into different sub-populations, and the expression patterns of specific marker genes were used to annotate these populations. Among the 31 differentially expressed genes in the cells of a patient who relapsed after hematopoietic stem cell transplantation, 13 genes were identified to be associated with leukemia. Furthermore, three genes, namely AT-rich interaction domain 2, lysine methyltransferase 2A and synaptotagmin binding cytoplasmic RNA interacting protein were validated as possible prognostic biomarkers using two bulk expression datasets. Taking advantage of scRNA-seq, the results of the present study may provide clinicians with several possible biomarkers to predict the prognostic outcomes of t(8;21) AML.
Collapse
Affiliation(s)
- Qian Xiong
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Sai Huang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yong-Hui Li
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Na Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Chao Lv
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yi Ding
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wen-Wen Liu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Li-Li Wang
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yang Chen
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Liang Sun
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Yi Zhao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Sheng-You Liao
- Key Laboratory of Intelligent Information Processing, Advanced Computer Research Center, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Michael Q Zhang
- School of Medicine, MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, TNLIST/Department of Automation, Tsinghua University, Beijing 100084, P.R. China
| | - Bao-Li Zhu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P.R. China
| | - Li Yu
- Department of Hematology and BMT Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| |
Collapse
|
21
|
Khalid A, Aslam S, Ahmed M, Hasnain S, Aslam A. Risk assessment of FLT3 and PAX5 variants in B-acute lymphoblastic leukemia: a case-control study in a Pakistani cohort. PeerJ 2019; 7:e7195. [PMID: 31565544 PMCID: PMC6743442 DOI: 10.7717/peerj.7195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/28/2019] [Indexed: 11/20/2022] Open
Abstract
AIMS B-cell acute lymphoblastic leukemia (B-ALL) is amongst the most prevalent cancers of children in Pakistan. Genetic variations in FLT3 are associated with auto-phosphorylation of kinase domain that leads to increased proliferation of blast cells. Paired box family of transcription factor (PAX5) plays a critical role in commitment and differentiation of B-cells. Variations in PAX5 are associated with the risk of B-ALL. We aimed to analyze the association of FLT3 and PAX5 polymorphisms with B cell leukemia in Pakistani cohort. METHODS We collected 155 B-ALL subject and 155 control blood samples. For analysis, genotyping was done by tetra ARMS-PCR. SPSS was used to check the association of demographic factors of SNPs present in the population with the risk of B-ALL. RESULTS Risk allele frequency A at locus 13q12.2 (rs35958982, FLT3) was conspicuous and showed positive association (OR = 2.30, CI [1.20–4.50], P = 0.005) but genotype frequency (OR = 3.67, CI [0.75–18.10], P = 0.088) failed to show any association with the disease. At locus 9p13.2 (rs3780135, PAX5), the risk allele frequency was significantly higher in B-ALL subjects than ancestral allele frequency (OR = 2.17, CI [1.37–3.43], P = 0.000). Genotype frequency analysis of rs3780135 polymorphism exhibited the protective effect (OR = 0.55, CI [0.72–1.83], P = 0.029). At locus 13q12.2 (rs12430881, FLT3), the minor allele frequency G (OR = 1.15, CI [1.37–3.43], P = 0.043) and genotype frequency (OR = 2.52, P = 0.006) reached significance as showed p < 0.05. CONCLUSION In the present study, a strong risk of B-cell acute lymphoblastic leukemia was associated with rs35958982 and rs12430881 polymorphisms. However, rs3780135 polymorphism showed the protective effect. Additionally, other demographic factors like family history, smoking and consanguinity were also found to be important in risk assessment. We anticipate that the information from genetic variations in this study can aid in therapeutic approach in the future.
Collapse
Affiliation(s)
- Ammara Khalid
- Department of Microbiology & Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Sara Aslam
- Department of Microbiology & Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Mehboob Ahmed
- Department of Microbiology & Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Shahida Hasnain
- Department of Microbiology & Molecular Genetics, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| | - Aimen Aslam
- Department of Statistics and Actuarial Science, Quaid-e-Azam Campus, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
22
|
Ampasavate C, Jutapakdee W, Phongpradist R, Tima S, Tantiworawit A, Charoenkwan P, Chinwong D, Anuchapreeda S. FLT3, a prognostic biomarker for acute myeloid leukemia (AML): Quantitative monitoring with a simple anti-FLT3 interaction and flow cytometric method. J Clin Lab Anal 2019; 33:e22859. [PMID: 30737839 PMCID: PMC6528579 DOI: 10.1002/jcla.22859] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 01/12/2019] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Overexpression of fms‐like tyrosine kinase 3 (FLT3) protein in leukemia is highly related to poor prognosis and reduced survival rate in acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL) patients. Simple but efficient quantification of FLT3 protein levels on the leukemic cell surface using flow cytometry had been developed for rapid determination of FLT3 on intact cell surface. Methods Quantitation protocol for FLT3 biomarker in clinical samples was developed and validated. Cell model selection for calibration curve construction was identified and evaluated. Selected antibody concentrations, cell density, and incubation time were evaluated for most appropriate conditions. Comparison of the developed FLT3 determination protocol with the conventional Western blot analysis was performed. Results EoL‐1 cell line was selected for using as positive control cells. Calibration curve (20%‐120% of FLT3 positive cells) and quality control (QC) levels were constructed and evaluated. The results demonstrated good linearity (r2 > 0.99). The intra‐ and inter‐day precision and accuracy, expressed as the coefficient of variation (%CV) and % recovery, were <20% and fell in 80%‐120% in all cases. When compared with Western blotting results, FLT3 protein expression levels in leukemia patient's bone marrow samples were demonstrated in the same trend. Conclusions The effective, reliable, rapid, and economical analytical technique using the developed flow cytometric method was demonstrated for FLT3 protein determination on leukemic cell surface. This method provided a practical analysis of FLT‐3 biomarker levels which is valuable for physician decision in acute leukemia treatment.
Collapse
Affiliation(s)
- Chadarat Ampasavate
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| | - Wasimon Jutapakdee
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Rungsinee Phongpradist
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Singkome Tima
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Adisak Tantiworawit
- Division of Hematology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pimlak Charoenkwan
- Department of Pediatrics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Dujrudee Chinwong
- Department of Pharmaceutical Care, Faculty of Pharmacy, Chiang Mai University, Chiang Mai, Thailand
| | - Songyot Anuchapreeda
- Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand.,Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|