1
|
Liu J, Mamun Bhuyan AA, Ma K, Zhu X, Zhou K, Lang F. Myricetin-induced suicidal erythrocyte death. Mol Biol Rep 2023; 50:4253-4260. [PMID: 36905403 DOI: 10.1007/s11033-023-08350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023]
Abstract
BACKGROUND Myricetin, a type of flavonol commonly found in fruits and herbs, has demonstrated anticancer properties by triggering the process of apoptosis or programmed cell death in tumor cells. Despite the absence of mitochondria and nuclei, erythrocytes can undergo programmed cell death, also known as eryptosis.This process is characterized by cell shrinkage, externalization of phosphatidylserine (PS) on the cell membrane, and the formation of membrane blebs. The signaling of eryptosis involves Ca2+ influx, the formation of reactive oxygen species (ROS), and the accumulation of cell surface ceramide. The present study explored the effects of myricetin on eryptosis. METHODS AND RESULTS Human erythrocytes were exposed to various concentrations of myricetin (2-8 µM) for 24 h. Flow cytometry was used to assess the markers of eryptosis, including PS exposure, cellular volume, cytosolic Ca2+ concentration, and ceramide accumulation. In addition, the levels of intracellular ROS were measured using the 2',7'-dichlorofluorescin diacetate (DCFDA) assay. The myricetin-treated (8 µM) erythrocytes significantly increased Annexin-positive cells, Fluo-3 fluorescence intensity, DCF fluorescence intensity, and the accumulation of ceramide. The impact of myricetin on the binding of annexin-V was significantly reduced, but not completely eliminated, by the nominal removal of extracellular Ca2+. CONCLUSION Myricetin triggers eryptosis, which is accompanied and, at least in part, caused by Ca2+ influx, oxidative stress and increase of ceramide abundance.
Collapse
Affiliation(s)
- Jibin Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Wenjiang, Chengdu, 611137, People's Republic of China.,Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Abdulla Al Mamun Bhuyan
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany.,Department of Veterinary and Animal Sciences, University of Rajshahi, Rajshahi, 6250, Bangladesh
| | - Ke Ma
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Xuexue Zhu
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Kuo Zhou
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany
| | - Florian Lang
- Department of Physiology, Eberhard-Karls-University of Tuebingen, Wilhlmstr. 56, 72076, Tuebingen, Germany.
| |
Collapse
|
2
|
Imran M, Saeed F, Hussain G, Imran A, Mehmood Z, Gondal TA, El‐Ghorab A, Ahmad I, Pezzani R, Arshad MU, Bacha U, Shariarti MA, Rauf A, Muhammad N, Shah ZA, Zengin G, Islam S. Myricetin: A comprehensive review on its biological potentials. Food Sci Nutr 2021; 9:5854-5868. [PMID: 34646551 PMCID: PMC8498061 DOI: 10.1002/fsn3.2513] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/27/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Myricetin is a critical nutritive component of diet providing immunological protection and beneficial for maintaining good health. It is found in fruits, vegetables, tea, and wine. The families Myricaceae, Polygonaceae, Primulaceae, Pinaceae, and Anacardiaceae are the richest sources of myricetin. Different researchers explored the therapeutic potential of this valuable constituent such as anticancer, antidiabetic, antiobesity, cardiovascular protection, osteoporosis protection, anti-inflammatory, and hepatoprotective. In addition to these, the compound has been tested for cancer and diabetic mellitus during clinical trials. Health benefits of myricetin are related to its impact on different cell processes, such as apoptosis, glycolysis, cell cycle, energy balance, lipid level, serum protein concentrations, and osteoclastogenesis. This review explored the potential health benefits of myricetin with a specific emphasis on its mechanism of action, considering the most updated and novel findings in the field.
Collapse
Affiliation(s)
- Muhammad Imran
- Faculty of Allied Health SciencesUniversity Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Farhan Saeed
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Ghulam Hussain
- Neurochemicalbiology and Genetics Laboratory (NGL)Department of PhysiologyFaculty of Life SciencesGovernment College UniversityFaisalabadPakistan
| | - Ali Imran
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Zaffar Mehmood
- School of Life SciencesForman Christian College (A Chartered University)LahorePakistan
| | - Tanweer Aslam Gondal
- School of Exercise and NutritionFaculty of HealthDeakin UniversityBurwoodVictoriaAustralia
| | - Ahmed El‐Ghorab
- College of Science, Chemistry DepartmentJouf UniversitySakakaSaudi Arabia
| | - Ishtiaque Ahmad
- Department of Dairy TechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
| | - Raffaele Pezzani
- Endocrinology UnitDepartment of Medicine (DIMED)University of PadovaPadovaItaly
- AIROBAssociazione Italiana per la Ricerca Oncologica di BasePadovaItaly
| | - Muhammad Umair Arshad
- Department of Food ScienceInstitute of Home and Food SciencesGovernment College UniversityFaisalabadPakistan
| | - Umar Bacha
- School of Health Sciences (SHS)University of Management and TechnologyJohar Town, LahorePakistan
| | - Mohammad Ali Shariarti
- Department of Technology of Food ProductionsK.G. RazumovskyMoscow State University of Technologies and Management (the First Cossack University)MoscowRussian Federation
| | - Abdur Rauf
- Department of ChemistryUniversity of SwabiSwabiKhyber Pakhtunkhwa (KP)Pakistan
| | - Naveed Muhammad
- Department of PharmacyAbdul Wali Khan UniversityMardanPakistan
| | - Zafar Ali Shah
- Department of ChemistryUniversity of SwabiSwabiKhyber Pakhtunkhwa (KP)Pakistan
| | - Gokhan Zengin
- Department of BiologyScience FacultySelcuk UniversityKonyaTurkey
| | - Saiful Islam
- Institute of Nutrition and Food ScienceUniversity of DhakaDhakaBangladesh
| |
Collapse
|
3
|
Combination of Broccoli Sprout Extract and Zinc Provides Better Protection against Intermittent Hypoxia-Induced Cardiomyopathy Than Monotherapy in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:2985901. [PMID: 31934264 PMCID: PMC6942874 DOI: 10.1155/2019/2985901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/31/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022]
Abstract
Nuclear factor-E2-related factor 2 (Nrf2) and metallothionein have each been reported to protect against chronic intermittent hypoxia- (IH-) induced cardiomyopathy. Sulforaphane-rich broccoli sprout extract (BSE) and zinc can effectively induce Nrf2 and metallothionein, respectively, to protect against IH-induced cardiomyopathy via antioxidative stress. However, whether the cardiac protective effects of the combination of BSE and zinc can be synergistic or the same has not been evaluated. In this study, we treated 8-week-old C57BL/6J mice with BSE and/or zinc during exposure to IH for 8 weeks. Cardiac dysfunction, as determined by echocardiography, and pathological remodeling and abnormalities, including cardiac fibrosis, inflammation, and oxidative damage, examined by histopathology and western blotting, were clearly observed in IH mice but were not significant in IH mice treated with either BSE, zinc, or zinc/BSE. Furthermore, the effects of the combined treatment with BSE and zinc were always greater than those of single treatments. Nrf2 function and metallothionein expression in the heart increased to a greater extent using the combination of BSE and zinc than using BSE or zinc alone. These findings for the first time indicate that the dual activation of Nrf2 and metallothionein by combined treatment with BSE and zinc may be more effective than monotherapy at preventing the development of IH-induced cardiomyopathy.
Collapse
|
4
|
Wang J, Wang S, Wang W, Chen J, Zhang Z, Zheng Q, Liu Q, Cai L. Protection against diabetic cardiomyopathy is achieved using a combination of sulforaphane and zinc in type 1 diabetic OVE26 mice. J Cell Mol Med 2019; 23:6319-6330. [PMID: 31270951 PMCID: PMC6714218 DOI: 10.1111/jcmm.14520] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 05/20/2019] [Accepted: 06/15/2019] [Indexed: 12/17/2022] Open
Abstract
Sulforaphane (SFN) can effectively induce nuclear factor E2–related factor 2 (Nrf2), and zinc (Zn) can effectively induce metallothionein (MT), both of which have been shown to protect against diabetic cardiomyopathy (DCM). However, it is unclear whether combined treatment with SFN and Zn offers better cardiac protection than either one alone. Here, we treated 5‐week‐old OVE mice that spontaneously develop type 1 diabetes with SFN and/or Zn for 18 weeks. Cardiac dysfunction, by echocardiography, and pathological alterations and remodelling, shown by cardiac hypertrophy, fibrosis, inflammation and oxidative damage, examined by histopathology, Western blotting and real‐time PCR, were observed in OVE mice. All these dysfunction and pathological abnormalities seen in OVE mice were attenuated in OVE mice with treatment of either SFN, Zn or SFN/Zn, and the combined treatment with SFN/Zn was better than single treatments at ameliorating DCM. In addition, combined SFN and Zn treatment increased Nrf2 function and MT expression in the heart of OVE mice to a greater extent than SFN or Zn alone. This indicates that the dual activation of Nrf2 and MT by combined treatment with SFN and Zn may be more effective than monotherapy at preventing the development of DCM via complementary, additive mechanisms.
Collapse
Affiliation(s)
- Jiqun Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, China.,Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA
| | - Shudong Wang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, China
| | - Wanning Wang
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA.,Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Jing Chen
- Department of Otolaryngology, Stanford University, Palo Alto, California, USA
| | - Zhiguo Zhang
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, China
| | - Qi Zheng
- Department of Bioinformatics and Biostatistics, University of Louisville, Louisville, Kentucky, USA
| | - Quan Liu
- The Center of Cardiovascular Diseases, The First Hospital of Jilin University, Changchun, China
| | - Lu Cai
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, Kentucky, USA.,Departments of Radiation Oncology, Pharmacology and Toxicology, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|