1
|
Lee CH, Ahn JH, Chen BH, Kim DW, Sim H, Lee TK, Park JH, Won MH, Choi SY. Differences in TNF‑α and TNF‑R1 expression in damaged neurons and activated astrocytes of the hippocampal CA1 region between young and adult gerbils following transient forebrain ischemia. Mol Med Rep 2021; 24:625. [PMID: 34212986 PMCID: PMC8281367 DOI: 10.3892/mmr.2021.12264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Abstract
Tumor necrosis factor (TNF)-α and TNF receptor 1 (TNF-R1) play diverse roles in modulating the neuronal damage induced by cerebral ischemia. The present study compared the time-dependent changes of TNF-α and TNF-R1 protein expression levels in the hippocampal subfield cornu ammonis 1 (CA1) between adult and young gerbils following transient forebrain ischemia (tFI), via western blot and immunohistochemistry analyses. In adult gerbils, delayed neuronal death of pyramidal neurons, the principal neurons in CA1, was recorded 4 days after tFI; however, in young gerbils, delayed neuronal death was recorded 7 days after tFI. TNF-α protein expression levels gradually increased in both groups following tFI; however, TNF-α expression was higher in young gerbils compared with adult gerbils. TNF-R1 protein expression levels markedly increased in both groups 1 day after tFI. Subsequently, TNF-R1 expression gradually decreased in young gerbils, whereas TNF-R1 expression levels were irregularly altered in adult gerbils following tFI. Notably, TNF-α immunoreactivity significantly increased in pyramidal neurons in both groups 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF-α immunoreactivity was rarely exhibited in pyramidal neurons 4 days after tFI due to neuronal death, suggesting that TNF-α immunoreactivity was newly expressed in astrocytes. In young gerbils, TNF-α immunoreactivity increased in pyramidal neurons 4 days after tFI, and TNF-α immunoreactivity was newly expressed in astrocytes. In addition, TNF-R1 immunoreactivity was exhibited in pyramidal cells of both sham groups, and significantly increased 1 day after tFI; however, the patterns altered between both groups. In adult gerbils, TNF-R1 immunoreactivity was rarely exhibited 4 days after tFI, and astrocytes newly expressed TNF-R1 immunoreactivity. In young gerbils, TNF-R1 immunoreactivity increased in pyramidal neurons 4 days after tFI; however, TNF-R1 immunoreactivity was not reported in pyramidal neurons and astrocytes thereafter. Taken together, the results of the present study suggest that different expression levels of TNF-α and TNF-R1 in ischemic CA1 between adult and young gerbils may be due to age-dependent differences of tFI-induced neuronal death.
Collapse
Affiliation(s)
- Choong Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungnam 31116, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Physical Therapy, College of Health Science, Youngsan University, Yangsan, Gyeongnam 50510, Republic of Korea
| | - Bai Hui Chen
- Department of Histology and Embryology, Institute of Neuroscience, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, and Research Institute of Oral Sciences, College of Dentistry, Gangnung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hyejin Sim
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| |
Collapse
|
2
|
Zhang J, Jiang Y, Liu N, Shen T, Jung HW, Liu J, Yan BC. A Network-Based Method for Mechanistic Investigation and Neuroprotective Effect on Post-treatment of Senkyunolid-H Against Cerebral Ischemic Stroke in Mouse. Front Neurol 2019; 10:1299. [PMID: 31920923 PMCID: PMC6930873 DOI: 10.3389/fneur.2019.01299] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/25/2019] [Indexed: 12/12/2022] Open
Abstract
Senkyunolide-H (SEH), a major bioactive compound extracted from Ligusticum chuanxiong, has been reported to be effective in preventing cerebral ischemic stroke (CIS). In this study, we employed network pharmacology to reveal potential mechanism of SEH against CIS on a system level and confirmed the therapeutic effects of SEH on CIS by models of cerebral ischemia-reperfusion in vivo and in vitro. Through protein-protein interaction networks construction of SEH- and CIS-related targets, a total of 62 key targets were obtained by screening topological indices and analyzed for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment. Gene Ontology analysis indicated that SEH might have a role in treating CIS via regulating some biological processes including regulation of transcription from RNA polymerase II promoter, epidermal growth factor receptor signaling pathway, phosphatidylinositol-mediated signaling, and some molecular function, such as transcription factor and protein phosphatase binding and nitric oxide synthase regulator activity. Meanwhile, the Kyoto Encyclopedia of Genes and Genomes analysis showed that phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway was significantly enriched. In addition, our result showed that SEH posttreatment significantly decreased the neurological scores, infarct volume, and neuronal death in the middle cerebral artery occlusion mice. Moreover, the PI3K/Akt/nuclear factor kappa B signaling pathway was activated by intragastric administration of 40 mg/kg SEH, as verified by Western blot. In vitro, treatment of PC12 cells with 100 μM SEH markedly reduced cell death induced by oxygen-glucose deprivation through the activation of PI3K/Akt/nuclear factor kappa B pathway, and the therapeutic effect of SEH was obviously inhibited by 10 μM LY294002. In summary, these results suggested that SEH carries a therapeutic potential in CIS involving multiple targets and pathways, and the most crucial mechanism might be through the activation of PI3K/Akt/nuclear factor kappa B (NF-κB) signaling pathway to inhibit inflammatory factor releases and increase the antiapoptosis capacity. Our study furnishes the future traditional Chinese medicine research with a network pharmacology framework.
Collapse
Affiliation(s)
- Jie Zhang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China
| | - Yunyao Jiang
- School of Pharmaceutical Sciences, Institute for Chinese Materia Medica, Tsinghua University, Beijing, China
| | - Nan Liu
- Beijing Increase Research for Drug Efficacy and Safety Co., Ltd., Beijing, China
| | - Ting Shen
- School of Life Sciences, Huaiyin Normal University, Huai'an, China
| | - Hyo Won Jung
- Department of Herbology, College of Korean Medicine, Dongguk University, Gyeongju-si, South Korea.,Korean Medicine R&D Center, Dongguk University, Gyeongju-si, South Korea
| | - Jianxun Liu
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bing Chun Yan
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Department of Traditional Chinese and Western Medicine, Yangzhou University, Yangzhou, China.,Department of Neurology, Affiliated Hospital, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|