1
|
Wójtowicz K, Czarzasta K, Przepiorka L, Kujawski S, Cudnoch-Jedrzejewska A, Marchel A, Kunert P. Brain-Derived Neurotrophic Factor (BDNF) Concentration Levels in Cerebrospinal Fluid and Plasma in Patients With Glioblastoma: A Prospective, Observational, Controlled Study. Cureus 2023; 15:e48237. [PMID: 38050515 PMCID: PMC10693926 DOI: 10.7759/cureus.48237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 12/06/2023] Open
Abstract
Objective Glioblastomas (GBMs) are among the most frequent and most malignant of untreatable brain tumors. A GBM marker could accelerate diagnosis and facilitate therapeutic monitoring. This prospective, observational, controlled study compared brain-derived neurotrophic factor (BDNF) levels in cerebrospinal fluid (CSF) and plasma between patients with GBM and a control group. Materials and methods Patients in the observational group underwent elective GBM resection (n=24, 55.8%). Control patients (n=19, 44.2%) had elective brain surgery for an unrelated, non-neoplastic, non-traumatic pathology. We measured BDNF levels in tumors, CSF, and plasma with enzyme-linked immunosorbent assay (ELISA). Peripheral blood and CSF samples were collected before surgery, and tumors were sampled intraoperatively. We analyzed correlations between BDNF levels and patient sex, age, seizures, smoking, diabetes mellitus (DM), and the use of selected antiepileptic drug (AED) and antihypertensive drug groups. Results The mean CSF BDNF concentration was significantly lower in patients with GBM (6.5 pg/mL) than in controls (11.48 pg/mL) (p=0.002). Similarly, the mean plasma BDNF concentration was significantly lower in patients with GBM (288.59 pg/mL) than in controls (574.06 pg/mL) (p=0.0005). None of the examined factors influenced CSF, plasma, or tumor tissue BDNF concentrations (p>0.05). Conclusion Plasma and CSF BDNF levels were significantly lower in adults with GBM than in controls. Thus, CSF and plasma BDNF levels may aid in GBM diagnoses. Further prospective studies are required.
Collapse
Affiliation(s)
| | - Katarzyna Czarzasta
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, POL
| | - Lukasz Przepiorka
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, POL
| | - Sławomir Kujawski
- Department of Exercise Physiology and Functional Anatomy, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, POL
| | - Agnieszka Cudnoch-Jedrzejewska
- Department of Experimental and Clinical Physiology, Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Warsaw, POL
| | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, POL
| | - Przemysław Kunert
- Department of Neurosurgery, Medical University of Warsaw, Warsaw, POL
| |
Collapse
|
2
|
Abdolahi S, Zare-Chahoki A, Noorbakhsh F, Gorji A. A Review of Molecular Interplay between Neurotrophins and miRNAs in Neuropsychological Disorders. Mol Neurobiol 2022; 59:6260-6280. [PMID: 35916975 PMCID: PMC9463196 DOI: 10.1007/s12035-022-02966-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/17/2022] [Indexed: 01/10/2023]
Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and therapeutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple sclerosis, Alzheimer's disease, Huntington's disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerging. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
Collapse
Affiliation(s)
- Sara Abdolahi
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Ameneh Zare-Chahoki
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Gorji
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neurosurgery, Westfälische Wilhelms-Universität, Münster, Germany.
- Department of Neurology and Institute for Translational Neurology, Westfälische Wilhelms-Universität, Münster, Germany.
- Epilepsy Research Center, Westfälische Wilhelms-Universität, 48149, Münster, Germany.
| |
Collapse
|
3
|
Abstract
PURPOSE Brain-derived neurotrophic factor (BDNF) belongs to the family of neurotrophic factors that can potentially increase cancer cell growth, survival, proliferation, anoikis, and migration by tyrosine kinase receptors TrkB and the p75NTR death receptor. The activation of BDNF/TrkB pathways leads to several downstream signaling pathways, including PI3K/Akt, Jak/STAT, PLCγ, Ras-Raf-MEK-ERK, NF-kB, and transactivation of EGFR. The current review aimed to provide an overview of the role of BDNF and its signaling in cancer. METHODS We searched a major medical database, PubMed, to identify eligible studies for a narrative synthesis. RESULTS Pathological examinations demonstrate BDNF overexpression in human cancer, notably involving the prostate, lung, breast, and underlying tissues, associated with a higher death rate and poor prognosis. Therefore, measurement of BDNF, either for identifying the disease or predicting response to therapy, can be helpful in cancer patients. Expression profiling studies have recognized the role of microRNAs (miR) in modulating BDNF/TrkB pathways, such as miR-101, miR-107, miR-134, miR-147, miR-191, miR-200a/c, miR-204, miR-206, miR-210, miR-214, miR-382, miR-496, miR-497, miR-744, and miR-10a-5p, providing a potential biological mechanism by which targeted therapies may correlate with decreased BDNF expression in cancers. Clinical studies investigating the use of agents targeting BDNF receptors and related signaling pathways and interfering with the related oncogenic effect, including Entrectinib, Larotrectinib, Cabozantinib, Repotrectinib, Lestaurtinib, and Selitrectinib, are in progress. CONCLUSION The aberrant signaling of BDNF is implicated in various cancers. Well-designed clinical trials are needed to clarify the BDNF role in cancer progression and target it as a therapeutic method.
Collapse
|
4
|
Zheng B, Chen T. MiR-489-3p inhibits cell proliferation, migration, and invasion, and induces apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in glioblastoma. Open Life Sci 2020; 15:274-283. [PMID: 33817216 PMCID: PMC7874546 DOI: 10.1515/biol-2020-0024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/09/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Among astrocyte tumors, glioblastoma (GBM) is the most malignant glioma, highly aggressive and invasive, with extremely poor prognosis. Previous research has reported that microRNAs (miRNAs) participate in the progression of many cancers. Thus, this study aimed to explore the role and the underlying mechanisms of microRNA (miR)-489-3p in GBM progression. The expression of miR-489-3p and brain-derived neurotrophic factor (BDNF) mRNA was measured by quantitative real-time polymerase chain reaction. Western blot analysis was used to detect BDNF protein and the PI3K/AKT pathway-related protein. Cell proliferation, apoptosis, migration, and invasion were analyzed using CKK-8 assay, flow cytometry, and transwell assay, respectively. The interaction between BDNF and miR-489-3p was explored by luciferase reporter assay and RNA immunoprecipitation (RIP) assay. MiR-489-3p was down-regulated and BDNF was up-regulated in GBM tissues and cells. MiR-489-3p re-expression or BDNF knockdown inhibited GBM cell proliferation, migration, and invasion, and promoted apoptosis. BDNF was a target of miR-489-3p, and BDNF up-regulation reversed the effects of miR-489-3p on GBM cells. The protein levels of p-AKT and p-PI3K were notably reduced in GBM cells by overexpression of miR-489-3p, but were rescued following BDNF up-regulation. Therefore, miR-489-3p inhibited proliferation, migration, and invasion, and induced apoptosis, by targeting the BDNF-mediated PI3K/AKT pathway in GBM, providing new strategies for clinical treatment of GBM.
Collapse
Affiliation(s)
- Bo Zheng
- Department of Neurosurgery, Jingzhou Central Hospital, Hubei Province, Jingzhou, 434020, China
| | - Tao Chen
- Department of Neurosurgery, Jingzhou Central Hospital, Hubei Province, Jingzhou, 434020, China
| |
Collapse
|
5
|
Niu X, Chen J, Gao J. Nanocarriers as a powerful vehicle to overcome blood-brain barrier in treating neurodegenerative diseases: Focus on recent advances. Asian J Pharm Sci 2018; 14:480-496. [PMID: 32104476 PMCID: PMC7032222 DOI: 10.1016/j.ajps.2018.09.005] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/26/2018] [Accepted: 09/01/2018] [Indexed: 02/08/2023] Open
Abstract
Neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington disease and amyotrophic lateral sclerosis throw a heavy burden on families and society. Related scientific researches make tardy progress. One reason is that the known pathogeny is just the tip of the iceberg. Another reason is that various physiological barriers, especially blood-brain barrier (BBB), hamper effective therapeutic substances from reaching site of action. Drugs in clinical treatment of neurodegenerative diseases are basically administered orally. And generally speaking, the brain targeting efficiency is pretty low. Nano-delivery technology brings hope for neurodegenerative diseases. The use of nanocarriers encapsulating molecules such as peptides and genomic medicine may enhance drug transport through the BBB in neurodegenerative disease and target relevant regions in the brain for regenerative processes. In this review, we discuss BBB composition and applications of nanocarriers -liposomes, nanoparticles, nanomicelles and new emerging exosomes in neurodegenerative diseases. Furthermore, the disadvantages and the potential neurotoxicity of nanocarriers according pharmacokinetics theory are also discussed.
Collapse
Affiliation(s)
- Xiaoqian Niu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiejian Chen
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Cancer Prevention and Intervention, the Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
6
|
Xie G. Circular RNA hsa-circ-0012129 Promotes Cell Proliferation and Invasion in 30 Cases of Human Glioma and Human Glioma Cell Lines U373, A172, and SHG44, by Targeting MicroRNA-661 (miR-661). Med Sci Monit 2018; 24:2497-2507. [PMID: 29686222 PMCID: PMC5936050 DOI: 10.12659/msm.909229] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Circular RNA (circRNA) is a stable non-coding RNA without 5′-3′ polarity and without a poly-A tail, that contains response elements for microRNAs (miRNAs) such as miR-661. There have previously been few reported studies on the role of circRNAs in glioma. The aim of this study was to investigate the effects of the expression of the circRNA, hsa-circ-0012129, and miR-661 in human glioma tissue and human glioma cell lines. Material/Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression of hsa-circ-0012129 and miR-661 in glioma tissues from 31 patients (WHO grades I–IV), compared with adjacent normal tissue, and in human glioma cell lines, U373, A172, and SHG44, compared with the normal human astrocyte cell line, NHA. The MTT assay, colony formation assay, transwell and wound scratch assays were performed to analyze and compare cell viability, cell migration, and invasion. Results Expression of hsa-circ-0012129 was significantly increased in glioma tissues and cell lines; hsa-circ-0012129 knockdown significantly suppressed the proliferation, migration, and invasion abilities of U373 and SHG44 cells. A dual-luciferase reporter assay showed that hsa-circ-0012129 contained the complementary binding region with miR-661 and that hsa-circ-0012129 expression negatively regulated miR-661. Rescue experiments showed that miR-661 could reverse the effects of hsa-circ-0012129 on cell viability, cell migration and invasion of glioma cells in vitro. Conclusions The findings of this study indicated that, in human glioma cells, the circRNA, hsa-circ-0012129 might act as a natural miR-661 sponge, and that miR-661 could have suppressive effects on the expression of circ-0012129.
Collapse
Affiliation(s)
- Gang Xie
- Dapartment of Neurosurgery, The Third Affiliated Hospital of Bengbu Medical College, Suzhou, Anhui, China (mainland)
| |
Collapse
|