1
|
Fan X, Zhang Z, Gao W, Pan Q, Luo K, He B, Pu Y. An Engineered Butyrate-Derived Polymer Nanoplatform as a Mucosa-Healing Enhancer Potentiates the Therapeutic Effect of Magnolol in Inflammatory Bowel Disease. ACS NANO 2024; 18:229-244. [PMID: 38112525 DOI: 10.1021/acsnano.3c05732] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Colonic epithelial damage and dysregulated immune response are crucial factors in the progression and exacerbation of inflammatory bowel disease (IBD). Nanoenabled targeted drug delivery to the inflamed intestinal mucosa has shown promise in inducing and maintaining colitis remission, while minimizing side effects. Inspired by the excellent antioxidative and anti-inflammatory efficacy of naturally derived magnolol (Mag) and gut homeostasis regulation of microbiota-derived butyrate, we developed a pH/redox dual-responsive butyrate-rich polymer nanoparticle (PSBA) as an oral Mag delivery system for combinational therapy of IBD. PSBA showed a high butyrate content of 22% and effectively encapsulated Mag. The Mag-loaded nanoparticles (PSBA@Mag) demonstrated colonic pH and reduction-responsive drug release, ensuring efficient retention and adhesion in the colon of colitis mice. PSBA@Mag not only normalized the level of reactive oxygen species and inflammatory effectors in inflamed colonic mucosa but also restored the epithelial barrier function in both ulcerative colitis and Crohn's disease mouse models. Importantly, PSBA promoted the migration and healing ability of intestinal epithelial cells in vitro and in vivo, sensitizing the therapeutic efficacy of Mag in animal models. Moreover, transcriptomics and metabolism analyses revealed that PSBA@Mag mitigated inflammation by suppressing the production of pro-inflammatory cytokines and chemokines and restoring the lipid metabolism. Additionally, this nanomedicine modulated the gut microbiota by inhibiting pathogenic Proteus and Escherichia-Shigella and promoting the proliferation of beneficial probiotics, including Lachnoclostridium, Lachnospiraceae_NK4A136_group and norank_f_Ruminococcaceae. Overall, our findings highlight the potential of butyrate-functionalized polymethacrylates as versatile and effective nanoplatforms for colonic drug delivery and mucosa repair in combating IBD and other gastrointestinal disorders.
Collapse
Affiliation(s)
- Xi Fan
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Zhuangzhuang Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Wenxia Gao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Qingqing Pan
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Functional and molecular imaging Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610041, China
| | - Bin He
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuji Pu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
2
|
Wang J, Xian M, Cao H, Wu L, Zhou L, Ma Y, Fan L, Lin L, Li G, Huang Q, Huang SK, Xiao X. Prophylactic and therapeutic potential of magnolol-loaded PLGA-PEG nanoparticles in a chronic murine model of allergic asthma. Front Bioeng Biotechnol 2023; 11:1182080. [PMID: 37214308 PMCID: PMC10192565 DOI: 10.3389/fbioe.2023.1182080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/20/2023] [Indexed: 05/24/2023] Open
Abstract
Magnolol is a chemically defined and active polyphenol extracted from magnolia plants possessing anti-allergic activity, but its low solubility and rapid metabolism dramatically hinder its clinical application. To improve the therapeutic effects, magnolol-encapsulated polymeric poly (DL-lactide-co-glycolide)-poly (ethylene glycol) (PLGA-PEG) nanoparticles were constructed and characterized. The prophylactic and therapeutic efficacy in a chronic murine model of OVA-induced asthma and the mechanisms were investigated. The results showed that administration of magnolol-loaded PLGA-PEG nanoparticles significantly reduced airway hyperresponsiveness, lung tissue eosinophil infiltration, and levels of IL-4, IL-13, TGF-β1, IL-17A, and allergen-specific IgE and IgG1 in OVA-exposed mice compared to their empty nanoparticles-treated mouse counterparts. Magnolol-loaded PLGA-PEG nanoparticles also significantly prevented mouse chronic allergic airway mucus overproduction and collagen deposition. Moreover, magnolol-encapsulated PLGA-PEG nanoparticles showed better therapeutic effects on suppressing allergen-induced airway hyperactivity, airway eosinophilic inflammation, airway collagen deposition, and airway mucus hypersecretion, as compared with magnolol-encapsulated poly (lactic-co-glycolic acid) (PLGA) nanoparticles or magnolol alone. These data demonstrate the protective effect of magnolol-loaded PLGA-PEG nanoparticles against the development of allergic phenotypes, implicating its potential usefulness for the asthma treatment.
Collapse
Affiliation(s)
- Junyi Wang
- Shenzhen Key Laboratory of Allergy and Immunology, Guangdong Provincial Standardization Allergen Engineering Research Center, State Key Laboratory of Respiratory Disease Shenzhen University Division, Institute of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Mo Xian
- Department of Allergy and Clinical Immunology, State Key Laboratory of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Cao
- Shenzhen Key Laboratory of Allergy and Immunology, Guangdong Provincial Standardization Allergen Engineering Research Center, State Key Laboratory of Respiratory Disease Shenzhen University Division, Institute of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lei Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Libo Zhou
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yihe Ma
- Shenzhen Key Laboratory of Allergy and Immunology, Guangdong Provincial Standardization Allergen Engineering Research Center, State Key Laboratory of Respiratory Disease Shenzhen University Division, Institute of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Long Fan
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Lin Lin
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Hospital of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Guoping Li
- Laboratory of Allergy and Precision Medicine, Department of Pulmonary and Critical Care Medicine, Chengdu Institute of Respiratory Health, The Third People’s Hospital of Chengdu, Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Qinmiao Huang
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shau-Ku Huang
- Shenzhen Key Laboratory of Allergy and Immunology, Guangdong Provincial Standardization Allergen Engineering Research Center, State Key Laboratory of Respiratory Disease Shenzhen University Division, Institute of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaojun Xiao
- Shenzhen Key Laboratory of Allergy and Immunology, Guangdong Provincial Standardization Allergen Engineering Research Center, State Key Laboratory of Respiratory Disease Shenzhen University Division, Institute of Allergy and Immunology, Shenzhen University School of Medicine, Shenzhen, China
- Department of Pulmonary and Critical Care Medicine, Third Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Tu A, Wang XC, Chen H, Jia X, Wang T, Yi Y, Liu B, Xin W, Lü X, Shan Y. Ovomucin Ameliorates Intestinal Barrier and Intestinal Bacteria to Attenuate DSS-Induced Colitis in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:5887-5896. [PMID: 34013725 DOI: 10.1021/acs.jafc.1c00865] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Egg white ovomucin (OVM) is homologically related to MUC2, the key component of colonic mucous layer. This study investigated the effects of orally administered OVM from egg white on the colonic mucosal barrier and the development of colitis using a colitis C57BL/6J mice model. The results showed that daily supplementation of 125 and 250 mg/kg BW of OVM partially relieved the villous destruction and loss of intestinal barrier integrity, and hence decreased the epithelial barrier permeability. The supplementation also reduced the secretion of proinflammatory cytokines TNF-α and IL-6. Besides, OVM administration significantly increased the relative abundance of intestinal beneficial bacteria including Lactobacilli, Faecalibaculum, Ruminococcus, etc. and further upregulated the production of bacterial metabolites such as short-chain fatty acids (SCFAs), which is a direct source of energy for the proliferation of epithelia and goblet cells. In conclusion, OVM from egg white ameliorates colitis by enhancing the intestinal barrier function and abundance of intestinal bacteria, thereby increasing the number of SCFAs.
Collapse
Affiliation(s)
- Aobai Tu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Xiu Chao Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Hongwang Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Xin Jia
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Tao Wang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Bianfang Liu
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Wang Xin
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| | - Yuanyuan Shan
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shannxi 712100, P. R. China
| |
Collapse
|
4
|
de Carvalho MV, Gonçalves-de-Albuquerque CF, Silva AR. PPAR Gamma: From Definition to Molecular Targets and Therapy of Lung Diseases. Int J Mol Sci 2021; 22:E805. [PMID: 33467433 PMCID: PMC7830538 DOI: 10.3390/ijms22020805] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/18/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that regulate the expression of genes related to lipid and glucose metabolism and inflammation. There are three members: PPARα, PPARβ or PPARγ. PPARγ have several ligands. The natural agonists are omega 9, curcumin, eicosanoids and others. Among the synthetic ligands, we highlight the thiazolidinediones, clinically used as an antidiabetic. Many of these studies involve natural or synthetic products in different pathologies. The mechanisms that regulate PPARγ involve post-translational modifications, such as phosphorylation, sumoylation and ubiquitination, among others. It is known that anti-inflammatory mechanisms involve the inhibition of other transcription factors, such as nuclear factor kB(NFκB), signal transducer and activator of transcription (STAT) or activator protein 1 (AP-1), or intracellular signaling proteins such as mitogen-activated protein (MAP) kinases. PPARγ transrepresses other transcription factors and consequently inhibits gene expression of inflammatory mediators, known as biomarkers for morbidity and mortality, leading to control of the exacerbated inflammation that occurs, for instance, in lung injury/acute respiratory distress. Many studies have shown the therapeutic potentials of PPARγ on pulmonary diseases. Herein, we describe activities of the PPARγ as a modulator of inflammation, focusing on lung injury and including definition and mechanisms of regulation, biological effects and molecular targets, and its role in lung diseases caused by inflammatory stimuli, bacteria and virus, and molecular-based therapy.
Collapse
Affiliation(s)
- Márcia V. de Carvalho
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| | - Cassiano F. Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Laboratório de Imunofarmacologia, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
- Programa de Pós-Graduação em Biologia Molecular e Celular, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20211-010, Brazil
| | - Adriana R. Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil;
- Programa de Pós-Graduação em Biologia Celular e Molecular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
5
|
Insights on the Multifunctional Activities of Magnolol. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1847130. [PMID: 31240205 PMCID: PMC6556366 DOI: 10.1155/2019/1847130] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 12/31/2022]
Abstract
Over years, various biological constituents are isolated from Traditional Chinese Medicine and confirmed to show multifunctional activities. Magnolol, a hydroxylated biphenyl natural compound isolated from Magnolia officinalis, has been extensively documented and shows a range of biological activities. Many signaling pathways include, but are not limited to, NF-κB/MAPK, Nrf2/HO-1, and PI3K/Akt pathways, which are implicated in the biological functions mediated by magnolol. Thus, magnolol is considered as a promising therapeutic agent for clinic research. However, the low water solubility, the low bioavailability, and the rapid metabolism of magnolol dramatically limit its clinical application. In this review, we will comprehensively discuss the last five-year progress of the biological activities of magnolol, including anti-inflammatory, antimicroorganism, antioxidative, anticancer, neuroprotective, cardiovascular protection, metabolism regulation, and ion-mediating activity.
Collapse
|
6
|
Wang X, Zhang C, Zheng M, Gao F, Zhang J, Liu F. Metabolomics Analysis of L-Arginine Induced Gastrointestinal Motility Disorder in Rats Using UPLC-MS After Magnolol Treatment. Front Pharmacol 2019; 10:183. [PMID: 30881305 PMCID: PMC6405429 DOI: 10.3389/fphar.2019.00183] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background and Purpose: Magnolol, as the main active ingredient of Traditional Chinese Medicine, can significantly improve gastrointestinal motility disorders (GMD). In the present study, metabolomics was used to investigate the mechanism of magnolol improving L-arginine induced GMD in rats. Experimental Approach: SD rats were randomly divided into control group, model group and magnolol treated group. L-arginine was injected intraperitoneally in model and magnolol groups to induce GMD model. All intervention regimens were administered by oral gavage, once a day for five consecutive days. Relative gastric emptying rate and propulsive intestinal rate were measured. Metabolites in serum were analyzed based on UPLC-MS metabolomics technique. Results: Magnolol significantly promoted gastric emptying and small intestinal propulsion. Compared with the model group, the level of serotonin and L-tryptophan significantly reversed (P < 0.05) and 22 metabolites reversed in the magnolol group. According to MetPA database analysis, magnolol has mainly affected 10 major metabolic pathways which were related to each other, Tryptophan metabolism is the most critical metabolic pathway associated with gastrointestinal tract. Conclusion: These findings suggest that magnolol has a significantly promoting effect on L-arginine induced gastrointestinal motility disorder in rats, the mechanism is to reduce the production of nitric oxide to weaken the function of nitric oxide relaxing the gastrointestinal smooth muscle and increase the content of serotonin to promote gastrointestinal peristalsis and motility, secretion, absorption of nutrients.
Collapse
Affiliation(s)
- Xiao Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chen Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mingyue Zheng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Gao
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jinming Zhang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Liu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|