1
|
Ma Y, Yang X, Pan P, Yang J, Wu X, Wang D, Gao H. Bestatin attenuates breast cancer stemness by targeting puromycin-sensitive aminopeptidase. Discov Oncol 2024; 15:197. [PMID: 38814491 PMCID: PMC11139817 DOI: 10.1007/s12672-024-01063-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/27/2024] [Indexed: 05/31/2024] Open
Abstract
Breast cancer is a prevalent malignant tumor among women with an increasing incidence rate annually. Breast cancer stem cells (BCSCs) are integral in impeding tumor advancement and addressing drug resistance. Bestatin serves as an adjuvant chemotherapy, triggering apoptosis in cancer cells. In this study, the effects of bestatin on sorted BCSCs from breast cancer cell lines have been studied. Our results indicated that bestatin inhibits the migration and proliferation of breast cancer cells by reducing the stemness of BCSCs both in vitro and in vivo. Puromycin-sensitive aminopeptidase is implicated in the process through the regulation of cell cycle, resulting in heightened cell apoptosis and diminished cell proliferation of BCSCs. Our study suggest that targeting cancer stem cell may offer a promising approach in breast cancer treatment, presenting noval therapeutic strategies for patients with breast cancer.
Collapse
Affiliation(s)
- Yan Ma
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xintong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Pengge Pan
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Jinyi Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, People's Republic of China
| | - Xiaojuan Wu
- Shengzhou Food and Drug Testing Center, Shaoxing, 312400, China
| | - Danhan Wang
- The 2nd Afflicated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325035, People's Republic of China.
| | - Hui Gao
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, Ningxia Medical University, Yinchuan, 750004, People's Republic of China.
| |
Collapse
|
2
|
Chen J, Chen L, Zeng F, Wu S. Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging. Anal Chem 2022; 94:8449-8457. [DOI: 10.1021/acs.analchem.2c01241] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Junjie Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Longqi Chen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Fang Zeng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China
| |
Collapse
|
3
|
Liu Q, Dong H, Zhao W, Zhang G, Li S, Xu Q, Zhang Y. Design, Synthesis, and Biological Evaluation of APN and AKT Dual-Target Inhibitors. ACS Med Chem Lett 2021; 12:1932-1941. [PMID: 34917257 DOI: 10.1021/acsmedchemlett.1c00504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/08/2021] [Indexed: 11/29/2022] Open
Abstract
Herein a novel series of APN and AKT dual inhibitors were derived from the clinical AKT inhibitor AZD5363. It was demonstrated that most compounds exhibited remarkable APN inhibitory activities with the most potent compound 8b (IC50 = 0.05 ± 0.01 μM) being over 70-fold more potent than the approved APN inhibitor bestatin (IC50 = 3.64 ± 0.56 μM). The moderate AKT inhibitory potencies of target compounds were also confirmed, with 5f and 5h possessing AKT1 IC50 values of 0.12 and 0.27 μM, respectively. More importantly, the APN IC50 values of 5f and 5h were 0.96 and 0.21 μM, respectively, indicating their balanced APN and AKT dual inhibition. HUVEC tube formation assays confirmed the superior APN inhibitory activities of 5f and 5h relative to bestatin at the cellular level. Western blot analysis demonstrated that 5h could effectively inhibit the phosphorylation of GSK3β, the intracellular substrate of AKT.
Collapse
Affiliation(s)
- Qian Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Hang Dong
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Wei Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Guozhen Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Shunda Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Qifu Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| | - Yingjie Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Ji’nan, Shandong 250012, P.R. China
| |
Collapse
|
4
|
East AK, Lucero MY, Chan J. New directions of activity-based sensing for in vivo NIR imaging. Chem Sci 2020; 12:3393-3405. [PMID: 34163614 PMCID: PMC8179399 DOI: 10.1039/d0sc03096a] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/28/2020] [Indexed: 12/12/2022] Open
Abstract
In vivo imaging is a powerful approach to study biological processes. Beyond cellular methods, in vivo studies allow for biological stimuli (small molecules or proteins) to be studied in their native environment. This has the potential to aid in the discovery of new biology and guide the development of diagnostics and therapies for diseases. To ensure selectivity and an observable readout, the probe development field is shifting towards activity-based sensing (ABS) approaches and near-infrared (NIR) imaging modalities. This perspective will highlight recent in vivo ABS applications that utilize NIR imaging platforms.
Collapse
Affiliation(s)
- Amanda K East
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Melissa Y Lucero
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| | - Jefferson Chan
- Department of Chemistry, The Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign Urbana IL 61801 USA
| |
Collapse
|
5
|
Wang Y, Pang B, Zhang R, Fu Y, Pang Q. Ubenimex induces apoptotic and autophagic cell death in rat GH3 and MMQ cells through the ROS/ERK pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3217-3228. [PMID: 31571825 PMCID: PMC6750015 DOI: 10.2147/dddt.s218371] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/20/2019] [Indexed: 12/26/2022]
Abstract
Purpose Ubenimex, an aminopeptidase N (APN) inhibitor, is widely known for its use as an adjunct therapy for cancer therapy. However, in recent studies, it has also conferred antitumour effects in many cancers, but its anticancer mechanism is largely unknown. This study aims to investigate the specific anticancer activities and mechanisms of ubenimex in GH3 and MMQ cells. Materials and methods In this study, we investigated the anticancer effects of ubenimex in GH3 and MMQ cells. Cell viability and cell death were assessed by the Cell Counting Kit-8 kit (CCK-8) and a LIVE/DEAD cell imaging kit. Apoptosis and intracellular reactive oxygen species (ROS) generation were assessed by flow cytometry and fluorescence microscopy. Autophagosome formation was detected by transmission electron microscopy, and autophagic flux was measured with mRFP-GFP-LC3 adenoviral transfection. The protein expression level was detected by Western blotting. Results The results revealed that treatment with ubenimex induced apoptotic and autophagic cell death in GH3 and MMQ cells, which resulted in decreased viability, an increased proportion of apoptotic cells, and autophagosome formation. Further experiments showed that ubenimex induced ROS generation and activated the ROS/ERK pathway. The ROS scavenger NAC could attenuate ubenimex-induced apoptosis and autophagy. Conclusion Our studies revealed that ubenimex exerted anticancer effects by inducing apoptotic and autophagic cell death in GH3 and MMQ cells, rendering it a possible effective adjunctive therapy for pituitary treatment.
Collapse
Affiliation(s)
- Yanjun Wang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China
| | - Bo Pang
- Department of Neurosurgery, Shandong University, Jinan 250021, People's Republic of China
| | - Rui Zhang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China
| | - Yibing Fu
- Department of Obstetrics and Gynecology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China
| | - Qi Pang
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan 250021, Shandong, People's Republic of China
| |
Collapse
|
6
|
Li F, Guo H, Yang Y, Feng M, Liu B, Ren X, Zhou H. Autophagy modulation in bladder cancer development and treatment (Review). Oncol Rep 2019; 42:1647-1655. [PMID: 31436298 PMCID: PMC6775810 DOI: 10.3892/or.2019.7286] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/01/2019] [Indexed: 12/24/2022] Open
Abstract
Bladder cancer (BC) is a potentially life-threatening malignancy. Due to a high recurrence rate, frequent surveillance strategies and intravesical drug therapies, BC is considered one of the most expensive tumors to treat. As a fundamental evolutionary catabolic process, autophagy plays an important role in the maintenance of cellular environmental homeostasis by degrading and recycling damaged cytoplasmic components, including macromolecules and organelles. Scientific studies in the last two decades have shown that autophagy acts as a double-edged sword with regard to the treatment of cancer. On one hand, autophagy inhibition is able to increase the sensitivity of cancer cells to treatment, a process known as protective autophagy. On the other hand, autophagy overactivation may lead to cell death, referred to as autophagic cell death, similar to apoptosis. Therefore, it is essential to identify the role of autophagy in cancer cells in order to develop novel therapeutic agents. In addition, autophagy may potentially become a novel therapeutic target in human diseases. In this review, the current knowledge on autophagy modulation in BC development and treatment is summarized.
Collapse
Affiliation(s)
- Faping Li
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hui Guo
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Yuxuan Yang
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Mingliang Feng
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Bin Liu
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xiang Ren
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Honglan Zhou
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|