2
|
Cao L, Zhu T, Lang X, Jia S, Yang Y, Zhu C, Wang Y, Feng S, Wang C, Zhang P, Chen J, Jiang H. Inhibiting DNA Methylation Improves Survival in Severe Sepsis by Regulating NF-κB Pathway. Front Immunol 2020; 11:1360. [PMID: 32714333 PMCID: PMC7343767 DOI: 10.3389/fimmu.2020.01360] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 05/28/2020] [Indexed: 12/17/2022] Open
Abstract
Organ dysfunction caused by sepsis is life-threatening and results in high mortality. Therapeutic options for sepsis are limited. Pathogenic factors are considered as components of environmental pressure that modify DNA methylation patterns thereby enhancing disease progression. Here, we found that sepsis patients exhibited higher levels of genomic DNA methylation patterns and hypermethylated genes associated with the NF-kB signaling pathway. Therefore, we hypothesized that a DNA methyl transferase inhibitor, Decitabine, may mitigate inflammation and improve survival by inhibiting the NF-κB signaling pathway. To test the hypothesis, mice challenged with caecal ligation and puncture (CLP) were subcutaneously injected with Decitabine solution (0.5, 1, and 1.5 mg/kg) 2 h following operation. Our results indicated that Decitabine reduces DNA methyltransferases (DNMTs), attenuates NF-κB activation, downregulates inflammatory cytokine levels, and inhibits the progression of sepsis. Thus, DNA methylation may be indispensable for sepsis and serve as a predicting factor. The use of Decitabine could represent a novel strategy in the treatment of sepsis.
Collapse
Affiliation(s)
- Luxi Cao
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Tingting Zhu
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Xiabing Lang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Sha Jia
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Yi Yang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Chaohong Zhu
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Yucheng Wang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Shi Feng
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Cuili Wang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Ping Zhang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Jianghua Chen
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| | - Hong Jiang
- Kidney Disease Center, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Nephropathy, Hangzhou, China.,Kidney Disease Immunology Laboratory, The Third-Grade Laboratory, State Administration of Traditional Chinese Medicine of China, Beijing, China.,Key Laboratory of Multiple Organ Transplantation, Ministry of Health of China, Hangzhou, China.,Institute of Nephropathy, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Zhai J, Qi A, Zhang Y, Jiao L, Liu Y, Shou S. Bioinformatics Analysis for Multiple Gene Expression Profiles in Sepsis. Med Sci Monit 2020; 26:e920818. [PMID: 32280132 PMCID: PMC7171431 DOI: 10.12659/msm.920818] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background This work aimed to screen key biomarkers related to sepsis progression by bioinformatics analyses. Material/Methods The microarray datasets of blood and neutrophils from patients with sepsis or septic shock were downloaded from Gene Expression Omnibus database. Then, differentially expressed genes (DEGs) from 4 groups (sepsis versus normal blood samples; septic shock versus normal blood samples; sepsis neutrophils versus normal controls and septic shock neutrophils versus controls) were respectively identified followed by functional analyses. Subsequently, protein–protein network was constructed, and key functional sub-modules were extracted. Finally, receiver operating characteristic analysis was conducted to evaluate diagnostic values of key genes. Results There were 2082 DEGs between blood samples of sepsis patients and controls, 2079 DEGs between blood samples of septic shock patients and healthy individuals, 6590 DEGs between neutrophils from sepsis and controls, and 1056 DEGs between neutrophils from septic shock patients and normal controls. Functional analysis showed that numerous DEGs were significantly enriched in ribosome-related pathway, cell cycle, and neutrophil activation involved in immune response. In addition, TRIM25 and MYC acted as hub genes in protein–protein interaction (PPI) analyses of DEGs from microarray datasets of blood samples. Moreover, MYC (AUC=0.912) and TRIM25 (AUC=0.843) had great diagnostic values for discriminating septic shock blood samples and normal controls. RNF4 was a hub gene from PPI analyses based on datasets from neutrophils and RNF4 (AUC=0.909) was capable of distinguishing neutrophil samples from septic shock samples and controls. Conclusions Our findings identified several key genes and pathways related to sepsis development.
Collapse
Affiliation(s)
- Jianhua Zhai
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Anlong Qi
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yan Zhang
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Lina Jiao
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Yancun Liu
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| | - Songtao Shou
- Department of Emergency, Tianjin Medical University General Hospital, Tianjin, China (mainland)
| |
Collapse
|
4
|
Guo Y, Zhang Y, Zhang SJ, Ma YN, He Y. Comprehensive analysis of key genes and microRNAs in radioresistant nasopharyngeal carcinoma. BMC Med Genomics 2019; 12:73. [PMID: 31138194 PMCID: PMC6537399 DOI: 10.1186/s12920-019-0507-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 04/22/2019] [Indexed: 12/22/2022] Open
Abstract
Background Radioresistance is one of the main obstacle limiting the therapeutic efficacy and prognosis of patients, the molecular mechanisms of radioresistance is still unclear. The purpose of this study was to identify the key genes and miRNAs and to explore their potential molecular mechanisms in radioresistant nasopharyngeal carcinoma. Methods In this study, we analysis the differentially expressed genes and microRNA based on the database of GSE48501 and GSE48502, and then employed bioinformatics to analyze the pathways and GO terms in which DEGs and DEMS target genes are involved. Moreover, Construction of protein-protein interaction network and identification of hub genes. Finally, analyzed the biological networks for validated target gene of hub miRNAs. Results A total of 373 differentially expressed genes (DEGs) and 14 differentially expressed microRNAs (DEMs) were screened out. The up-regulated gene JUN was overlap both in DEGs and publicly available studies, which was potentially targeted by three miRNAs, including hsa-miR-203, hsa-miR-24 and hsa-miR-31. Moreover, Pathway analysis showed that both up-regulated gene and DEMs target genes were enriched in TGF-beta signaling pathway, Hepatitis B, Pathways in cancer and p53 signaling pathway. Finally, we further constructed protein-protein interaction network (PPI) of DEGs and analyzed the biological networks for above mentioned common miRNAs, the result indicated that JUN was a core hub gene in PPI network, hsa-miR-24 and its target gene were significantly enriched in P53 signaling pathway. Conclusions These results might provide new clues to improve the radiosensitivity of Nasopharyngeal Carcinoma. Electronic supplementary material The online version of this article (10.1186/s12920-019-0507-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ya Guo
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China.
| | - Yang Zhang
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China
| | - Shu Juan Zhang
- Department of Oncology, Kashi No.2 peoples' Hospital of Xin Jiang, Kashi, 844000, Xin jiang, China
| | - Yi Nan Ma
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China
| | - Yun He
- Department of Oncology, The Second Affiliated Hospital of Medical College, Xi'an Jiao Tong University, 157 xi wu road, Xi'an, 710004, People's Republic of China
| |
Collapse
|