1
|
Song YR, Jang B, Lee SM, Bae SJ, Bak SB, Kim YW. Angelica gigas NAKAI and Its Active Compound, Decursin, Inhibit Cellular Injury as an Antioxidant by the Regulation of AMP-Activated Protein Kinase and YAP Signaling. Molecules 2022; 27:molecules27061858. [PMID: 35335221 PMCID: PMC8954541 DOI: 10.3390/molecules27061858] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/05/2022] [Accepted: 03/08/2022] [Indexed: 11/16/2022] Open
Abstract
Natural products and medicinal herbs have been used to treat various human diseases by regulating cellular functions and metabolic pathways. Angelica gigas NAKAI (AG) helps regulate pathological processes in some medical fields, including gastroenterology, gynecology, and neuropsychiatry. Although some papers have reported its diverse indications, the effects of AG against arachidonic acid (AA)+ iron and carbon tetrachloride (CCl4) have not been reported. In HepG2 cells, AA+ iron induced cellular apoptosis and mitochondrial damage, as assessed by mitochondrial membrane permeability (MMP) and the expression of apoptosis-related proteins. On the other hand, AG markedly inhibited these detrimental phenomena and reactive oxygen species (ROS) production induced by AA+ iron. AG activated the liver kinase B1 (LKB1)-dependent AMP-activated protein kinase (AMPK), which affected oxidative stress in the cells. Moreover, AG also regulated the expression of yes-associated protein (YAP) signaling as mediated by the AMPK pathways. In mice, an oral treatment of AG protected against liver toxicity induced by CCl4, as indicated by the plasma and histochemical parameters. Among the compounds in AG, decursin had antioxidant activity and affected the AMPK pathway. In conclusion, AG has antioxidant effects in vivo and in vitro, indicating that natural products such as AG could be potential candidate for the nutraceuticals to treat various disorders by regulating mitochondrial dysfunction and cellular metabolic pathways.
Collapse
|
2
|
El-Aarag B, Attia A, Zahran M, Younes A, Tousson E. New phthalimide analog ameliorates CCl 4 induced hepatic injury in mice via reducing ROS formation, inflammation, and apoptosis. Saudi J Biol Sci 2021; 28:6384-6395. [PMID: 34764756 PMCID: PMC8568827 DOI: 10.1016/j.sjbs.2021.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The present study aimed, for the first time, to examine the biochemical effects of new phthalimide analog, 2-[2-(2-Bromo-1-ethyl-1H-indol-3-yl) ethyl]-1H-isoindole-1,3(2H)-dione, compared to thalidomide drug against liver injury induced in mice. Carbon tetrachloride was intraperitoneal injected in mice for 6 consecutive weeks at a dose of 0.4 mL/kg twice a week for liver injury induction. Histopathological examination, levels of malondialdehyde, nitric oxide, and antioxidant enzymes were determined. Additionally, the protein levels of vascular endothelial growth factor, proliferating cell nuclear protein, tumor necrosis factor-alfa, nuclear factor kappa B-p65, B-cell lymphoma-2, and cysteine-aspartic acid protease-3 were determined. Results revealed that the treatment with phthalimide analog improved the detected liver damage and presented an obvious antioxidant activity through decreasing malondialdehyde and nitric oxide levels accompanied by increasing the levels of the antioxidant enzymes. Furthermore, the analog exhibited an effective inhibitory activity towards the studied protein expressions in liver tissues. Moreover, the B-cell lymphoma-2 protein level was increased while the cysteine-aspartic acid protease-3 level was suppressed after the treatment with phthalimide analog. Together, these results propose that phthalimide analog can ameliorate carbon tetrachloride-induced liver injury in mice through its potent inhibition mediating effect in oxidative stress, inflammation, and apoptosis mechanisms.
Collapse
Affiliation(s)
- Bishoy El-Aarag
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Alshaimaa Attia
- Biochemistry Division, Chemistry Department, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Magdy Zahran
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Ali Younes
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Koom 32512, Egypt
| | - Ehab Tousson
- Zoology Department, Faculty of Science, Tanta University, Tanta, Gharbia, Egypt
| |
Collapse
|
3
|
Akakpo JY, Jaeschke MW, Ramachandran A, Curry SC, Rumack BH, Jaeschke H. Delayed administration of N-acetylcysteine blunts recovery after an acetaminophen overdose unlike 4-methylpyrazole. Arch Toxicol 2021; 95:3377-3391. [PMID: 34420083 PMCID: PMC8448936 DOI: 10.1007/s00204-021-03142-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/18/2021] [Indexed: 12/11/2022]
Abstract
N-acetylcysteine (NAC) is the only clinically approved antidote against acetaminophen (APAP) hepatotoxicity. Despite its efficacy in patients treated early after APAP overdose, NAC has been implicated in impairing liver recovery in mice. More recently, 4-methylpyrazole (4MP, Fomepizole) emerged as a potential antidote in the mouse APAP hepatotoxicity model. The objective of this manuscript was to verify the detrimental effect of NAC and its potential mechanism and assess whether 4MP has the same liability. C57BL/6J mice were treated with 300 mg/kg APAP; 9h after APAP and every 12h after that, the animals received either 100 mg/kg NAC or 184.5 mg/kg 4MP. At 24 or 48h after APAP, parameters of liver injury, mitochondrial biogenesis and cell proliferation were evaluated. Delayed NAC treatment had no effect on APAP-induced liver injury at 24h but reduced the decline of plasma ALT activities and prevented the shrinkage of the areas of necrosis at 48h. This effect correlated with down-regulation of key activators of mitochondrial biogenesis (AMPK, PGC-1α, Nrf1/2, TFAM) and reduced expression of Tom 20 (mitochondrial mass) and PCNA (cell proliferation). In contrast, 4MP attenuated liver injury at 24h and promoted recovery at 48h, which correlated with enhanced mitochondrial biogenesis and hepatocyte proliferation. In human hepatocytes, 4MP demonstrated higher efficacy in preventing cell death compared to NAC when treated at 18h after APAP. Thus, due to the wider treatment window and lack of detrimental effects on recovery, it appears that at least in preclinical models, 4MP is superior to NAC as an antidote against APAP overdose.
Collapse
Affiliation(s)
- Jephte Y Akakpo
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Matthew W Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Anup Ramachandran
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA
| | - Steven C Curry
- Division of Clinical Data Analytics and Decision Support, and Division of Medical Toxicology and Precision Medicine, Department of Medicine, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Barry H Rumack
- Department of Emergency Medicine and Pediatrics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Hartmut Jaeschke
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, MS 1018, Kansas City, KS, 66160, USA.
| |
Collapse
|
4
|
Chen R, Wang Q, Zhao L, Yang S, Li Z, Feng Y, Chen J, Ong CN, Zhang H. Lomatogonium Rotatum for Treatment of Acute Liver Injury in Mice: A Metabolomics Study. Metabolites 2019; 9:metabo9100227. [PMID: 31615066 PMCID: PMC6836280 DOI: 10.3390/metabo9100227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/11/2022] Open
Abstract
Lomatogonium rotatum (L.) Fries ex Nym (LR) is used as a traditional Mongolian medicine to treat liver and bile diseases. This study aimed to investigate the hepatoprotective effect of LR on mice with CCl4-induced acute liver injury through conventional assays and metabolomics analysis. This study consisted of male mice (n = 23) in four groups (i.e., control, model, positive control, and LR). The extract of whole plant of LR was used to treat mice in the LR group. Biochemical and histological assays (i.e., serum levels of alanine transaminase (ALT) and aspartate transaminase (AST), and histological changes of liver tissue) were used to evaluate LR efficacy, and metabolomics analysis based on GC-MS and LC-MS was conducted to reveal metabolic changes. The conventional analysis and metabolomic profiles both suggested that LR treatment could protect mice against CCl4-induced acute liver injury. The affected metabolic pathways included linoleic acid metabolism, α-linolenic acid metabolism, arachidonic acid metabolism, CoA biosynthesis, glycerophospholipid metabolism, the TCA cycle, and purine metabolism. This study identified eight metabolites, including phosphopantothenic acid, succinic acid, AMP, choline, glycerol 3-phosphate, linoleic acid, arachidonic acid, and DHA, as potential biomarkers for evaluating hepatoprotective effect of LR. This metabolomics study may shed light on possible mechanisms of hepatoprotective effect of LR.
Collapse
Affiliation(s)
- Renhao Chen
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Qi Wang
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Lanjun Zhao
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Shilin Yang
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Zhifeng Li
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herb Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang 330002, China.
| | - Yulin Feng
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Nanchang 330006, China.
| | - Jiaqing Chen
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| | - Choon Nam Ong
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore.
| | - Hui Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore.
| |
Collapse
|
5
|
Abdelazim A, Khater S, Ali H, Shalaby S, Afifi M, Saddick S, Alkaladi A, Almaghrabi OA. Panax ginseng improves glucose metabolism in streptozotocin-induced diabetic rats through 5' adenosine monophosphate kinase up-regulation. Saudi J Biol Sci 2018; 26:1436-1441. [PMID: 31762606 PMCID: PMC6864146 DOI: 10.1016/j.sjbs.2018.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 05/09/2018] [Accepted: 06/04/2018] [Indexed: 12/12/2022] Open
Abstract
5′ AMP-activated protein kinase (AMPK), insulin receptors and transporters are distorted in diabetes mellitus. In this study, the effect of Panax ginseng was assessed on glucose manipulating enzymes activities and gene expression of AMPK, IRA and GLUT2 in streptozotocin-induced diabetic male rats. Forty male albino rats were randomly divided to four groups 10 rats of each, group I, normal control group (received saline orally); group II, normal rats received 200 mg/kg of Panax ginseng orally; group III, Streptozotocin (STZ) –induced diabetic rats and group IV, STZ-induced diabetic rats received 200 mg/kg of Panax ginseng orally. The duration of experiment was 30 days. Results showed the ability of Panax ginseng to induce a significant decrease in the blood glucose and increase in the serum insulin levels, hepatic glucokinase (GK), and glycogen synthase (GS) activities with a modulation of lipid profile besides high expression levels of AMPK, insulin receptor A (IRA), glucose transporting protein-2 (GLUT-2) in liver of diabetic rats. In conclusion, the obtained results point to the ability of Panax ginseng to improve the glucose metabolism in diabetic models.
Collapse
Affiliation(s)
- Aaser Abdelazim
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Basic Medical Sciences, College of Applied Medical Sciences, University of Bisha, Bisha, Saudi Arabia
| | - Safaa Khater
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Haytham Ali
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Shimaa Shalaby
- Department of Physiology, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt
| | - Mohamed Afifi
- Department of Biochemistry, Faculty of Vet. Medicine, Zagazig University, Zagazig, Egypt.,Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia.,University of Jeddah Center for Scientific and Medical Research, University of Jeddah, Saudi Arabia
| | - Salina Saddick
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ali Alkaladi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| | - Omar A Almaghrabi
- Department of Biological Sciences, Faculty of Science, University of Jeddah, Saudi Arabia
| |
Collapse
|