1
|
Castaldi MA, Torelli AP, Scala P, Castaldi SG, Mollo A, Perniola G, Polichetti M. Instrumental Diagnosis of Placenta Accreta and Obstetric and Perinatal Outcomes: Literature Review and Observational Study. Transl Med UniSa 2024; 26:111-121. [PMID: 39385796 PMCID: PMC11460529 DOI: 10.37825/2239-9747.1060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/19/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
Aim Placenta accreta (PA) is a condition where the placenta is pathologically adherent to the uterus due to a defect in the basal decidua with myometrium invasion by chorionic villi and is classified based on the depth of myometrial invasion by histology. However, ultrasound and magnetic resonance imaging have excellent accuracy. In this study, we investigated clinical benefits of early instrumental diagnosis of PA, especially in reducing maternal-fetal complications and improving perinatal outcomes. We also evaluated diagnostic accuracy of ultrasound and magnetic resonance imaging on placental invasiveness assessment. Methods In this review and observational retrospective study, risk factors of PA were collected, and pregnant women underwent third-trimester ultrasound and magnetic resonance imaging (MRI) to evaluate the degree of infiltration. Imaging results compared to histological findings and surgical evaluation. Results A total of 38 patients were diagnosed with at the University Hospital "San Giovanni di Dio and Ruggi d'Aragona", Salerno, Italy, by second-trimester ultrasound with high sensitivity (100%) and accuracy (86%). Moreover, 37 of them performed MRI and 60.5% were diagnosed with Accreta, 7.9% increta, 10.5% percreta, and 21.1% not accrue with high sensitivity (100%), specificity (88.9%), and accuracy (97.4%). Histological assay confirmed MRI findings in 96.7% of cases. Risk factors of PA were age >35 years and previous CT scans. In unborn babies, mean 1-min Apgar was 4.3 (range, 3-6), and mean 5-min Apgar was 7.13 (range, 7-9). Conclusion MRI could be a not-invasive, specific, sensitive, and accurate diagnostic tool for assessing the degree of infiltration in PA, and could guide clinical decisions, such as delivery plan, thus reducing perioperative and fetal complications.
Collapse
Affiliation(s)
- Maria A. Castaldi
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi,
Italy
- High Risk Pregnancy Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno,
Italy
| | - Alessandro P. Torelli
- Department of Gynecological, Obstetrical and Urological Sciences, “Sapienza” University of Rome, Rome,
Italy
| | - Pasqualina Scala
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi,
Italy
| | - Salvatore G. Castaldi
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi,
Italy
| | - Antonio Mollo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Baronissi,
Italy
| | - Giorgia Perniola
- Department of Gynecological, Obstetrical and Urological Sciences, “Sapienza” University of Rome, Rome,
Italy
| | - Mario Polichetti
- High Risk Pregnancy Unit, University Hospital “San Giovanni di Dio e Ruggi d’Aragona”, Salerno,
Italy
| |
Collapse
|
2
|
Omeljaniuk WJ, Laudański P, Miltyk W. The role of miRNA molecules in the miscarriage process. Biol Reprod 2023; 109:29-44. [PMID: 37104617 PMCID: PMC10492520 DOI: 10.1093/biolre/ioad047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
The etiology and pathogenesis of miscarriage, which is the most common pregnancy complication, have not been fully elucidated. There is a constant search for new screening biomarkers that would allow for the early diagnosis of disorders associated with pregnancy pathology. The profiling of microRNA expression is a promising research area, which can help establish the predictive factors for pregnancy diseases. Molecules of microRNAs are involved in several processes crucial for the development and functioning of the body. These processes include cell division and differentiation, programmed cell death, blood vessel formation or tumorigenesis, and the response to oxidative stress. The microRNAs affect the number of individual proteins in the body due to their ability to regulate gene expression at the post-transcriptional level, ensuring the normal course of many cellular processes. Based on the scientific facts available, this paper presents a compendium on the role of microRNA molecules in the miscarriage process. The expression of potential microRNA molecules as early minimally invasive diagnostic biomarkers may be evaluated as early as the first weeks of pregnancy and may constitute a monitoring factor in the individual clinical care of women in early pregnancy, especially after the first miscarriage. To summarize, the described scientific data set a new direction of research in the development of preventive care and prognostic monitoring of the course of pregnancy.
Collapse
Affiliation(s)
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women’s Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Wojciech Miltyk
- Department of Analysis and Bioanalysis of Medicines, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
3
|
Guo C, Yin X, Yao S. The effect of MicroRNAs variants on idiopathic recurrent pregnancy loss. J Assist Reprod Genet 2023; 40:1589-1595. [PMID: 37199867 PMCID: PMC10352210 DOI: 10.1007/s10815-023-02827-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/08/2023] [Indexed: 05/19/2023] Open
Abstract
BACKGROUND Although the importance of miRNA variants in female reproductive disorders has been frequently reported, the association between miRNA polymorphisms and recurrent pregnancy loss (RPL) has been poorly studied. In this study, we aimed to assess the correlation of four different miRNA variants to unexplained RPL. METHODS AND RESULTS The prevalence of four SNPs including miR-21 rs1292037, miR-155-5p rs767649, miR-218-2 rs11134527, and miR-605 rs2043556 in 280 cases with iRPL and 280 controls was performed. The DNA was extracted from all subjects and the SNPs were genotyped using RFLP-PCR methods. The data revealed that rs1292037 and rs767649 were significantly associated with higher rates of iRPL in patients compared with controls while rs11134527 and rs2043556 showed no association with increased rates of iRPL among patients. The haplotypes T-A-G-G and T-A-G-A were the most frequent in both cases and controls. Three haplotypes including T-T-G-A, C-T-G-G, and T-A-A-A showed significantly different frequencies in patients in comparison to healthy females. CONCLUSION This study suggests that rs1292037 and rs767649 could be risk factors for increased rates of iRPL.
Collapse
Affiliation(s)
- Chunlei Guo
- Department of Obstetrics, Hengshui People's Hospital, 180 East Renmin Rd, Hengshui, 053000, China
| | - Xuejing Yin
- Department of Obstetrics, Hengshui People's Hospital, 180 East Renmin Rd, Hengshui, 053000, China
| | - Shuiping Yao
- Department of Obstetrics, Hengshui People's Hospital, 180 East Renmin Rd, Hengshui, 053000, China.
| |
Collapse
|
4
|
Taylor AS, Tinning H, Ovchinnikov V, Edge J, Smith W, Pullinger AL, Sutton RA, Constantinides B, Wang D, Forbes K, Forde N, O'Connell MJ. A burst of genomic innovation at the origin of placental mammals mediated embryo implantation. Commun Biol 2023; 6:459. [PMID: 37100852 PMCID: PMC10133327 DOI: 10.1038/s42003-023-04809-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
The origin of embryo implantation in mammals ~148 million years ago was a dramatic shift in reproductive strategy, yet the molecular changes that established mammal implantation are largely unknown. Although progesterone receptor signalling predates the origin of mammals and is highly conserved in, and critical for, successful mammal pregnancy, it alone cannot explain the origin and subsequent diversity of implantation strategies throughout the placental mammal radiation. MiRNAs are known to be flexible and dynamic regulators with a well-established role in the pathophysiology of mammal placenta. We propose that a dynamic core microRNA (miRNA) network originated early in placental mammal evolution, responds to conserved mammal pregnancy cues (e.g. progesterone), and facilitates species-specific responses. Here we identify 13 miRNA gene families that arose at the origin of placental mammals and were subsequently retained in all descendent lineages. The expression of these miRNAs in response to early pregnancy molecules is regulated in a species-specific manner in endometrial epithelia of species with extreme implantation strategies (i.e. bovine and human). Furthermore, this set of miRNAs preferentially target proteins under positive selective pressure on the ancestral eutherian lineage. Discovery of this core embryo implantation toolkit and specifically adapted proteins helps explain the origin and evolution of implantation in mammals.
Collapse
Affiliation(s)
- Alysha S Taylor
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Haidee Tinning
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Vladimir Ovchinnikov
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Jessica Edge
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - William Smith
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Fertility, Leeds Teaching Hospitals NHS Trust, York Road, Seacroft, Leeds, LS14 6UH, UK
| | - Anna L Pullinger
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Ruth A Sutton
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Bede Constantinides
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Modernising Medical Microbiology Consortium, Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Dapeng Wang
- LeedsOmics, University of Leeds, Leeds, LS2 9JT, UK
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| | - Karen Forbes
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK
| | - Niamh Forde
- Discovery and Translational Sciences Department, Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, UK.
| | - Mary J O'Connell
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, NG7 2RD, UK.
| |
Collapse
|
5
|
Murrieta-Coxca JM, Barth E, Fuentes-Zacarias P, Gutiérrez-Samudio RN, Groten T, Gellhaus A, Köninger A, Marz M, Markert UR, Morales-Prieto DM. Identification of altered miRNAs and their targets in placenta accreta. Front Endocrinol (Lausanne) 2023; 14:1021640. [PMID: 36936174 PMCID: PMC10022468 DOI: 10.3389/fendo.2023.1021640] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 02/07/2023] [Indexed: 03/06/2023] Open
Abstract
Placenta accreta spectrum (PAS) is one of the major causes of maternal morbidity and mortality worldwide with increasing incidence. PAS refers to a group of pathological conditions ranging from the abnormal attachment of the placenta to the uterus wall to its perforation and, in extreme cases, invasion into surrounding organs. Among them, placenta accreta is characterized by a direct adhesion of the villi to the myometrium without invasion and remains the most common diagnosis of PAS. Here, we identify the potential regulatory miRNA and target networks contributing to placenta accreta development. Using small RNA-Seq followed by RT-PCR confirmation, altered miRNA expression, including that of members of placenta-specific miRNA clusters (e.g., C19MC and C14MC), was identified in placenta accreta samples compared to normal placental tissues. In situ hybridization (ISH) revealed expression of altered miRNAs mostly in trophoblast but also in endothelial cells and this profile was similar among all evaluated degrees of PAS. Kyoto encyclopedia of genes and genomes (KEGG) analyses showed enriched pathways dysregulated in PAS associated with cell cycle regulation, inflammation, and invasion. mRNAs of genes associated with cell cycle and inflammation were downregulated in PAS. At the protein level, NF-κB was upregulated while PTEN was downregulated in placenta accreta tissue. The identified miRNAs and their targets are associated with signaling pathways relevant to controlling trophoblast function. Therefore, this study provides miRNA:mRNA associations that could be useful for understanding PAS onset and progression.
Collapse
Affiliation(s)
| | - Emanuel Barth
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Faculty of Mathematics and Computer Science, Bioinformatics Core Facility, Friedrich Schiller University Jena, Jena, Germany
| | | | | | - Tanja Groten
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
| | - Alexandra Gellhaus
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
| | - Angela Köninger
- Department of Gynecology and Obstetrics, University of Duisburg-Essen, Essen, Germany
- University Department of Gynecology and Obstetrics, Hospital St. Hedwig of the Order of St. John, University Medical Center Regensburg, Regensburg, Germany
| | - Manja Marz
- Friedrich Schiller University Jena, Faculty of Mathematics and Computer Science, RNA Bioinformatics and High Throughput Analysis, Jena, Germany
- Fritz Lipman Institute (FLI), Leibniz Institute for Age Research, Jena, Germany
| | - Udo R. Markert
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| | - Diana M. Morales-Prieto
- Department of Obstetrics, Placenta Lab, Jena University Hospital, Jena, Germany
- *Correspondence: Udo R. Markert, ; Diana M. Morales-Prieto,
| |
Collapse
|
6
|
Ezat SA, Haji AI. Study of association between different microRNA variants and the risk of idiopathic recurrent pregnancy loss. Arch Gynecol Obstet 2022; 306:1281-1286. [PMID: 35841423 DOI: 10.1007/s00404-022-06663-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022]
Abstract
AIM Recurrent pregnancy loss (RPL) is a common reproductive disorder among women and a major cause of infertility among them; however, the underlying causes of RPL remain unknown which have led to great difficulties and complications in the treatment. MicroRNAs (miRNA) have been shown to be a potential diagnosis tools in different reproductive disorders. This study aimed to investigate the association of four different miRNA variants with the risk of idiopathic RPL (iRPL). METHODS A total of 450 women including 225 patients and 225 controls were recruited in this study. DNA was extracted, and genotyped by PCR method. Haplotype analysis, as well as linkage disequilibrium between SNPs, was performed. CONCLUSION This study suggested that rs4636297, rs41291957, and rs353292, but not rs531564 can play a risk factor role for iRLP.
Collapse
Affiliation(s)
- Shayma Abd Ezat
- Department of Obstetrics and Gynecology, College of Medicine, Iraqi Board in Obstetrics/Gynecology, Hawler Medical University, Erbil, Kurdistan Region, 54612504, Iraq.
| | - Azheen Ismael Haji
- Department of Obstetrics and Gynecology, Maternity Teaching Hospital, Erbil, Kurdistan Region, Iraq
| |
Collapse
|
7
|
Manzoor U, Pandith AA, Amin I, Wani S, Sanadhya D, Lone TA, Mir H, Paray BA, Gulnaz A, Anwar I, Ahmad A, Aein QU. Implications of Decreased Expression of miR-125a with Respect to Its Variant Allele in the Pathogenesis of Recurrent Pregnancy Loss: A Study in a High Incidence Zone. J Clin Med 2022; 11:jcm11133834. [PMID: 35807118 PMCID: PMC9267497 DOI: 10.3390/jcm11133834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022] Open
Abstract
Pregnancy is controlled by several types of genes and the regulation of their expression is tightly controlled by miRNAs. The present study was carried out to explore the association between miR-125a polymorphic sequence variation and its expression and recurrent pregnancy loss (RPL) compared to full-term healthy controls. A total of 150 women that had experienced two or more RPLs and 180 healthy controls (two or more full-term pregnancies) were recruited, along with 50 product of conception (POC) samples from the corresponding RPL patients, and evaluated for miR-125a SNPs by the polymerase chain reaction-restriction fragment length polymorphism method (PCR-RFLP), which was confirmed by high resolution melting (HRM)/DNA sequencing. Additionally, the expression of miR-125a was quantified with q−PCR in the maternal plasma of 40 corresponding RPL patients against healthy controls. The frequency of variant genotype CC was significantly higher in RPL cases (19.3%) than controls (10.5%), with an odds ratio of >2 (p = 0.025). The expression levels of miR-125a were markedly decreased in RPL cases compared to healthy controls (p < 0.05). Variant genotype CC was found significantly more often in RPL cases than controls (0.34 vs. 0.20; p < 0.05).In this study, miR-125a rs12976445 C/T revealed that the homozygous CC genotype and C allele were associated with the risk of RPL and significant expression indicates that miR-125a has an important role in RPL etiopathogenesis.
Collapse
Affiliation(s)
- Usma Manzoor
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (U.M.); (I.A.); (I.A.); (Q.U.A.)
- School of Life and Basic Sciences, Jaipur National University, Jaipur 302017, India;
| | - Arshad A. Pandith
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (U.M.); (I.A.); (I.A.); (Q.U.A.)
- Correspondence: or
| | - Ina Amin
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (U.M.); (I.A.); (I.A.); (Q.U.A.)
- Department of Clinical Biochemistry, University of Kashmir, Srinagar 190006, India
| | - Saima Wani
- Department of Obstetrics and Gynecology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (S.W.); (A.A.)
| | - Dheera Sanadhya
- School of Life and Basic Sciences, Jaipur National University, Jaipur 302017, India;
| | - Tawseef A. Lone
- Department of General Surgery, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India;
| | - Hyder Mir
- Influenza Lab, Internal and Pulmonary Medicine, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India;
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Aneela Gulnaz
- College of Pharmacy, Woosuk University, Wanju-gun 55338, Korea;
| | - Iqra Anwar
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (U.M.); (I.A.); (I.A.); (Q.U.A.)
- School of Life and Basic Sciences, Jaipur National University, Jaipur 302017, India;
| | - Abida Ahmad
- Department of Obstetrics and Gynecology, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (S.W.); (A.A.)
| | - Qurat Ul Aein
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences (SKIMS), Srinagar 190011, India; (U.M.); (I.A.); (I.A.); (Q.U.A.)
| |
Collapse
|
8
|
Lu Y, Zhang X, Li X, Deng L, Wei C, Yang D, Tan X, Pan W, Pang L. MiR-135a-5p suppresses trophoblast proliferative, migratory, invasive, and angiogenic activity in the context of unexplained spontaneous abortion. Reprod Biol Endocrinol 2022; 20:82. [PMID: 35610725 PMCID: PMC9128262 DOI: 10.1186/s12958-022-00952-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/05/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Spontaneous abortions (SA) is amongst the most common complications associated with pregnancy in humans, and the underlying causes cannot be identified in roughly half of SA cases. We found miR-135a-5p to be significantly upregulated in SA-associated villus tissues, yet the function it plays in this context has yet to be clarified. This study explored the function of miR-135a-5p and its potential as a biomarker for unexplained SA. METHOD RT-qPCR was employed for appraising miR-135a-5p expression within villus tissues with its clinical diagnostic values being assessed using ROC curves. The effects of miR-135a-5p in HTR-8/SVneo cells were analyzed via wound healing, Transwell, flow cytometry, EdU, CCK-8, and tube formation assays. Moreover, protein expression was examined via Western blotting, and interactions between miR-135a-5p and PTPN1 were explored through RIP-PCR, bioinformatics analyses and luciferase reporter assays. RESULTS Relative to normal pregnancy (NP), villus tissue samples from pregnancies that ended in unexplained sporadic miscarriage (USM) or unexplained recurrent SA (URSA) exhibited miR-135a-5p upregulation. When this miRNA was overexpressed in HTR-8/SVneo cells, their migration, proliferation, and cell cycle progression were suppressed, as were their tube forming and invasive activities. miR-135a-5p over-expression also downregulated the protein level of cyclins, PTPN1, MMP2 and MMP9. In RIP-PCR assays, the Ago2 protein exhibited significant miR-135a-5p and PTPN1 mRNA enrichment, and dual-luciferase reporter assays indicated PTPN1 to be a bona fide miR-135a-5p target gene within HTR-8/SVneo cells. CONCLUSION miR-135a-5p may suppress trophoblast migratory, invasive, proliferative, and angiogenic activity via targeting PTPN1, and it may thus offer value as a biomarker for unexplained SA.
Collapse
Affiliation(s)
- Yebin Lu
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
- Guangxi Medical University, Guangxi, China
| | - Xiaoli Zhang
- Guangxi Medical University, Guangxi, China
- Department of Obstetrics and Gynecology, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Xueyu Li
- Guangxi Medical University, Guangxi, China
- Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Guangxi, China
| | - Lingjie Deng
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | | | - Dongmei Yang
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China
| | - Xuemei Tan
- Guangxi Medical University, Guangxi, China
| | | | - Lihong Pang
- Department of Prenatal Diagnosis and Genetic Diseases, First Affiliated Hospital of Guangxi Medical University, Guangxi, China.
| |
Collapse
|
9
|
Žarković M, Hufsky F, Markert UR, Marz M. The Role of Non-Coding RNAs in the Human Placenta. Cells 2022; 11:1588. [PMID: 35563893 PMCID: PMC9104507 DOI: 10.3390/cells11091588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/01/2022] [Accepted: 05/03/2022] [Indexed: 12/11/2022] Open
Abstract
Non-coding RNAs (ncRNAs) play a central and regulatory role in almost all cells, organs, and species, which has been broadly recognized since the human ENCODE project and several other genome projects. Nevertheless, a small fraction of ncRNAs have been identified, and in the placenta they have been investigated very marginally. To date, most examples of ncRNAs which have been identified to be specific for fetal tissues, including placenta, are members of the group of microRNAs (miRNAs). Due to their quantity, it can be expected that the fairly larger group of other ncRNAs exerts far stronger effects than miRNAs. The syncytiotrophoblast of fetal origin forms the interface between fetus and mother, and releases permanently extracellular vesicles (EVs) into the maternal circulation which contain fetal proteins and RNA, including ncRNA, for communication with neighboring and distant maternal cells. Disorders of ncRNA in placental tissue, especially in trophoblast cells, and in EVs seem to be involved in pregnancy disorders, potentially as a cause or consequence. This review summarizes the current knowledge on placental ncRNA, their transport in EVs, and their involvement and pregnancy pathologies, as well as their potential for novel diagnostic tools.
Collapse
Affiliation(s)
- Milena Žarković
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Franziska Hufsky
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
| | - Udo R. Markert
- Placenta Lab, Department of Obstetrics, University Hospital Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany; (M.Ž.); (F.H.)
- European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany
- FLI Leibniz Institute for Age Research, Beutenbergstraße 11, 07745 Jena, Germany
- Aging Research Center (ARC), 07745 Jena, Germany
| |
Collapse
|
10
|
Carey AZ, Blue NR, Varner MW, Page JM, Chaiyakunapruk N, Quinlan AR, Branch DW, Silver RM, Workalemahu T. A Systematic Review to Guide Future Efforts in the Determination of Genetic Causes of Pregnancy Loss. FRONTIERS IN REPRODUCTIVE HEALTH 2021; 3. [PMID: 35462723 PMCID: PMC9031276 DOI: 10.3389/frph.2021.770517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background: Pregnancy loss is the most common obstetric complication occurring in almost 30% of conceptions overall and in 12–14% of clinically recognized pregnancies. Pregnancy loss has strong genetic underpinnings, and despite this consensus, our understanding of its genetic causes remains limited. We conducted a systematic review of genetic factors in pregnancy loss to identify strategies to guide future research.Methods: To synthesize data from population-based association studies on genetics of pregnancy loss, we searched PubMed for relevant articles published between 01/01/2000-01/01/2020. We excluded review articles, case studies, studies with limited sample sizes to detect associations (N < 4), descriptive studies, commentaries, and studies with non-genetic etiologies. Studies were classified based on developmental periods in gestation to synthesize data across various developmental epochs.Results: Our search yielded 580 potential titles with 107 (18%) eligible after title/abstract review. Of these, 54 (50%) were selected for systematic review after full-text review. These studies examined either early pregnancy loss (n = 9 [17%]), pregnancy loss >20 weeks' gestation (n = 10 [18%]), recurrent pregnancy loss (n = 32 [59%]), unclassified pregnancy loss (n = 3 [4%]) as their primary outcomes. Multiple genetic pathways that are essential for embryonic/fetal survival as well as human development were identified.Conclusion: Several genetic pathways may play a role in pregnancy loss across developmental periods in gestation. Systematic evaluation of pregnancy loss across developmental epochs, utilizing whole genome sequencing in families may further elucidate causal genetic mechanisms and identify other pathways critical for embryonic/fetal survival.
Collapse
Affiliation(s)
- Andrew Z. Carey
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
| | - Nathan R. Blue
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Michael W. Varner
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Jessica M. Page
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Nathorn Chaiyakunapruk
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT, United States
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Aaron R. Quinlan
- Department of Human Genetics, University of Utah, Salt Lake City, UT, United States
- Utah Center for Genetic Discovery, University of Utah, Salt Lake City, UT, United States
- Department of Biomedical Informatics, University of Utah, Salt Lake City, UT, United States
| | - D. Ware Branch
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Robert M. Silver
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- Department of Obstetrics and Gynecology, Intermountain Healthcare, Salt Lake City, UT, United States
| | - Tsegaselassie Workalemahu
- Department of Obstetrics & Gynecology, University of Utah Health, Salt Lake City, UT, United States
- *Correspondence: Tsegaselassie Workalemahu
| |
Collapse
|
11
|
Significance of Sex Differences in ncRNAs Expression and Function in Pregnancy and Related Complications. Biomedicines 2021; 9:biomedicines9111509. [PMID: 34829737 PMCID: PMC8614665 DOI: 10.3390/biomedicines9111509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
In the era of personalized medicine, fetal sex-specific research is of utmost importance for comprehending the mechanisms governing pregnancy and pregnancy-related complications. In recent times, noncoding RNAs (ncRNAs) have gained increasing attention as critical players in gene regulation and disease pathogenesis, and as candidate biomarkers in human diseases as well. Different types of ncRNAs, including microRNAs (miRNAs), piwi-interacting RNAs (piRNAs), long noncoding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in every step of pregnancy progression, although studies taking into consideration fetal sex as a central variable are still limited. To date, most of the available data have been obtained investigating sex-specific placental miRNA expression. Several studies revealed that miRNAs regulate the (patho)-physiological processes in a sexually dimorphic manner, ensuring normal fetal development, successful pregnancy, and susceptibility to diseases. Moreover, the observation that ncRNA profiles differ according to cells, tissues, and developmental stages of pregnancy, along with the complex interactions among different types of ncRNAs in regulating gene expression, strongly indicates that more studies are needed to understand the role of sex-specific ncRNA in pregnancy and associated disorders.
Collapse
|
12
|
Profiling the small non-coding RNA transcriptome of the human placenta. Sci Data 2021; 8:166. [PMID: 34215751 PMCID: PMC8253835 DOI: 10.1038/s41597-021-00948-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Abstract
Proper functioning of the human placenta is critical for maternal and fetal health. While microRNAs (miRNAs) are known to impact placental gene expression, the effects of other small non-coding RNAs (sncRNAs) on the placental transcriptome are not well-established, and are emerging topics in the study of environmental influence on fetal development and reproductive health. Here, we assembled a cohort of 30 placental chorionic villi samples of varying gestational ages (M ± SD = 23.7 ± 11.3 weeks) to delineate the human placental sncRNA transcriptome through small RNA sequence analysis. We observed expression of 1544 sncRNAs, which include 48 miRNAs previously unannotated in humans. Additionally, 18,003 miRNA variants (isomiRs) were identified from the 654 observed miRNA species. This characterization of the term and pre-term placental sncRNA transcriptomes provides data fundamental to future investigations of their regulatory functions in the human placenta, and the baseline expression pattern needed for identifying changes in response to environmental factors, or under disease conditions.
Collapse
|
13
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
14
|
Li N, Hou R, Yang T, Liu C, Wei J. miR-193a-3p Mediates Placenta Accreta Spectrum Development by Targeting EFNB2 via Epithelial-Mesenchymal Transition Pathway Under Decidua Defect Conditions. Front Mol Biosci 2021; 7:613802. [PMID: 33585562 PMCID: PMC7873918 DOI: 10.3389/fmolb.2020.613802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 12/15/2020] [Indexed: 11/26/2022] Open
Abstract
Objective: To clarify the role of microRNA-193a-3p (miR-193a-3p) in the pathogenesis of placenta accreta spectrum. Methods: The placental tissue expression levels of miR-193a-3p and Ephrin-B2 (EFNB2) were compared between a placenta accreta spectrum group and a control group. Transwell migration and invasion assays were used to verify the effect of miR-193a-3p and EFNB2 on HTR-8/SVneo cells cultured in human endometrial stromal cell (hESC)-conditioned medium. Epithelial-mesenchymal transition (EMT)-related proteins were examined by western blotting to establish whether the EMT pathway was altered in placenta accreta spectrum. To determine whether EFNB2 is a target gene of miR-193a-3p, luciferase activity assays were performed. Results: miR-193a-3p was upregulated but EFNB2 downregulated in the placenta accreta spectrum group and EFNB2 was a direct target of miR-193a-3p. Overexpression or inhibition of miR-193a-3p revealed that miR-193a-3p promoted the migration and invasion of HTR-8/SVneo cells cultured in hESC-conditioned medium. Furthermore, EMT was induced, as shown by increased N-cadherin, vimentin, MMP2, and MMP9 and decreased E-cadherin in the placenta accreta spectrum group and in HTR-8/SVneo cells transfected with miR-193a-3p mimics or si-EFNB2. The negative effect of miR-193a-3p inhibitor was reversed by co-transfection with si-EFNB2 in function studies and in analyses of EMT-related proteins in vitro. Conclusion: miR-193a-3p which upregulated in placenta accreta spectrum group increases HTR-8/SVneo cell migration and invasion by targeting EFNB2 via the EMT pathway under decidua defect conditions to lead to placenta accreta spectrum.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Tian Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| |
Collapse
|
15
|
Block LN, Bowman BD, Schmidt JK, Keding LT, Stanic AK, Golos TG. The promise of placental extracellular vesicles: models and challenges for diagnosing placental dysfunction in utero†. Biol Reprod 2021; 104:27-57. [PMID: 32856695 PMCID: PMC7786267 DOI: 10.1093/biolre/ioaa152] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Monitoring the health of a pregnancy is of utmost importance to both the fetus and the mother. The diagnosis of pregnancy complications typically occurs after the manifestation of symptoms, and limited preventative measures or effective treatments are available. Traditionally, pregnancy health is evaluated by analyzing maternal serum hormone levels, genetic testing, ultrasonographic imaging, and monitoring maternal symptoms. However, researchers have reported a difference in extracellular vesicle (EV) quantity and cargo between healthy and at-risk pregnancies. Thus, placental EVs (PEVs) may help to understand normal and aberrant placental development, monitor pregnancy health in terms of developing placental pathologies, and assess the impact of environmental influences, such as infection, on pregnancy. The diagnostic potential of PEVs could allow for earlier detection of pregnancy complications via noninvasive sampling and frequent monitoring. Understanding how PEVs serve as a means of communication with maternal cells and recognizing their potential utility as a readout of placental health have sparked a growing interest in basic and translational research. However, to date, PEV research with animal models lags behind human studies. The strength of animal pregnancy models is that they can be used to assess placental pathologies in conjunction with isolation of PEVs from fluid samples at different time points throughout gestation. Assessing PEV cargo in animals within normal and complicated pregnancies will accelerate the translation of PEV analysis into the clinic for potential use in prognostics. We propose that appropriate animal models of human pregnancy complications must be established in the PEV field.
Collapse
Affiliation(s)
- Lindsey N Block
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Brittany D Bowman
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna Kropp Schmidt
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Logan T Keding
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Aleksandar K Stanic
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaddeus G Golos
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
16
|
Kennedy EM, Hermetz K, Burt A, Everson TM, Deyssenroth M, Hao K, Chen J, Karagas MR, Pei D, Koestler DC, Marsit CJ. Placental microRNA expression associates with birthweight through control of adipokines: results from two independent cohorts. Epigenetics 2020; 16:770-782. [PMID: 33016211 DOI: 10.1080/15592294.2020.1827704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs are non-coding RNAs that regulate gene expression post-transcriptionally. In the placenta, the master regulator of foetal growth and development, microRNAs shape the basic processes of trophoblast biology and specific microRNA have been associated with foetal growth. To comprehensively assess the role of microRNAs in placental function and foetal development, we have performed small RNA sequencing to profile placental microRNAs from two independent mother-infant cohorts: the Rhode Island Child Health Study (n = 225) and the New Hampshire Birth Cohort Study (n = 317). We modelled microRNA counts on infant birthweight percentile (BWP) in each cohort, while accounting for race, sex, parity, and technical factors, using negative binomial generalized linear models. We identified microRNAs that were differentially expressed (DEmiRs) with BWP at false discovery rate (FDR) less than 0.05 in both cohorts. hsa-miR-532-5p (miR-532) was positively associated with BWP in both cohorts. By integrating parallel whole transcriptome and small RNA sequencing in the RICHS cohort, we identified putative targets of miR-532. These targets are enriched for pathways involved in adipogenesis, adipocytokine signalling, energy metabolism, and hypoxia response, and included Leptin, which we further demonstrated to have a decreasing expression with increasing BWP, particularly in male infants. Overall, we have shown a robust and reproducible association of miR-532 with BWP, which could influence BWP through regulation of adipocytokines Leptin and Adiponectin.
Collapse
Affiliation(s)
- Elizabeth M Kennedy
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Todd M Everson
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Ke Hao
- Department of Genetics and Genome Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA.,Dartmouth College, Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Lebanon, NH, USA
| | - Dong Pei
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
17
|
Eaves L, Phookphan P, Rager J, Bangma J, Santos HP, Smeester L, O'Shea TM, Fry R. A role for microRNAs in the epigenetic control of sexually dimorphic gene expression in the human placenta. Epigenomics 2020; 12:1543-1558. [PMID: 32901510 DOI: 10.2217/epi-2020-0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Aim: The contribution of miRNAs as epigenetic regulators of sexually dimorphic gene expression in the placenta is unknown. Materials & methods: 382 placentas from the extremely low gestational age newborns (ELGAN) cohort were evaluated for expression levels of 37,268 mRNAs and 2,102 miRNAs using genome-wide RNA-sequencing. Differential expression analysis was used to identify differences in the expression based on the sex of the fetus. Results: Sexually dimorphic expression was observed for 128 mRNAs and 59 miRNAs. A set of 25 miRNA master regulators was identified that likely contribute to the sexual dimorphic mRNA expression. Conclusion: These data highlight sex-dependent miRNA and mRNA patterning in the placenta and provide insight into a potential mechanism for observed sex differences in outcomes.
Collapse
Affiliation(s)
- Lauren Eaves
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Preeyaphan Phookphan
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Laksi, Bangkok 10210, Thailand
| | - Julia Rager
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jacqueline Bangma
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hudson P Santos
- Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,School of Nursing, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lisa Smeester
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Thomas Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rebecca Fry
- Department of Environmental Sciences & Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Institute for Environmental Health Solutions, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Curriculum in Toxicology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.,Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
18
|
Addo KA, Palakodety N, Hartwell HJ, Tingare A, Fry RC. Placental microRNAs: Responders to environmental chemicals and mediators of pathophysiology of the human placenta. Toxicol Rep 2020; 7:1046-1056. [PMID: 32913718 PMCID: PMC7472806 DOI: 10.1016/j.toxrep.2020.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/02/2020] [Accepted: 08/03/2020] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are epigenetic modifiers that play an important role in the regulation of the expression of genes across the genome. miRNAs are expressed in the placenta as well as other organs, and are involved in several biological processes including the regulation of trophoblast differentiation, migration, invasion, proliferation, apoptosis, angiogenesis and cellular metabolism. Related to their role in disease process, miRNAs have been shown to be differentially expressed between normal placentas and placentas obtained from women with pregnancy/health complications such as preeclampsia, gestational diabetes mellitus, and obesity. This dysregulation indicates that miRNAs in the placenta likely play important roles in the pathogenesis of diseases during pregnancy. Furthermore, miRNAs in the placenta are susceptible to altered expression in relation to exposure to environmental toxicants. With relevance to the placenta, the dysregulation of miRNAs in both placenta and blood has been associated with maternal exposures to several toxicants. In this review, we provide a summary of miRNAs that have been assessed in the context of human pregnancy-related diseases and in relation to exposure to environmental toxicants in the placenta. Where data are available, miRNAs are discussed in their context as biomarkers of exposure and/or disease, with comparisons made across-tissue types, and conservation across studies detailed.
Collapse
Affiliation(s)
- Kezia A. Addo
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Niharika Palakodety
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Hadley J. Hartwell
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Aishani Tingare
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C. Fry
- Curriculum in Toxicology and Environmental Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
- Institute for Environmental Health Solutions, Gilling School of Global Public Health, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Yang T, Li N, Hou R, Qiao C, Liu C. Development and validation of a four-microRNA signature for placenta accreta spectrum: an integrated competing endogenous RNA network analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:919. [PMID: 32953719 PMCID: PMC7475428 DOI: 10.21037/atm-20-1150] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Placenta accreta spectrum (PAS) is a major cause of maternal morbidity and mortality in modern obstetrics, however, few studies have explored the underlying molecular mechanisms and biomarkers. In this study, we aimed to elucidate the regulatory RNA network contributing to PAS, comprising long non-coding (lnc), micro (mi), and messenger (m) RNAs, and identify biomarkers for the prediction of intraoperative blood volume loss. Methods Using RNA sequencing, we compared mRNA, lncRNA, and miRNA expression profiles between five PAS and five normal placental tissues. Furthermore, the miRNA expression profiles in maternal plasma samples from ten PAS and ten control participants were assessed. The data and clinical information were analyzed using R language and GraphPad Prism 7 software. Results Upon comparing PAS and control placentas, we identified 8,806 lncRNAs, 128 miRNAs, and 1,788 mRNAs that were differentially expressed. Based on a lasso regression analysis and correlation predictions, we developed a competing endogenous (ce) RNA network comprising 20 lncRNAs, 4 miRNAs, and 19 mRNAs. This network implicated a reduced angiogenesis pathway in PAS, and correlation analyses indicated that two miRNAs (hsa-miR‐490-3p and hsa-miR-133a-3p) were positively correlated to operation-related blood volume loss. Conclusions We identified a ceRNA regulatory mechanism in PAS, and two miRNAs that may potentially serve as biomarkers of PAS prognosis.
Collapse
Affiliation(s)
- Tian Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| |
Collapse
|
20
|
Abstract
Pregnancy is a natural process that poses an immunological challenge because non-self fetus must be accepted. During the pregnancy period, the fetus as 'allograft' inherits maternal and also paternal antigens. For successful and term pregnancy, the fetus is tolerated and nurtured enjoying immune privileges that minimize the risk of being rejected by maternal immune system. Multiple mechanisms contribute to tolerate the semi-allogeneic fetus. Here, we summarize the recent progresses on how the maternal immune system actively collaborates to maintain the immune balance and maternal-fetal tolerance.
Collapse
Affiliation(s)
- Xiaopeng Li
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jiayi Zhou
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Min Fang
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,International College, University of the Chinese Academy of Sciences, Beijing, China
| | - Bolan Yu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.,Guangdong Engineering and Technology Research Center of Maternal-Fetal Medicine, Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
21
|
Jiang Z, Xu Z, Hu T, Song B, Li F, Wang K. Expression of Krüppel-like factor 9 in breast cancer patients and its effect on prognosis. Oncol Lett 2020; 20:1311-1317. [PMID: 32724373 PMCID: PMC7377114 DOI: 10.3892/ol.2020.11689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Expression of Krüppel-like factor 9 (KLF9) in breast cancer tissue and its influence on prognosis was investigated. Sixty-eight patients with breast cancer admitted in Ningde Hospital Affiliated to Fujian Medical University from February 2014 to August 2015 were collected, and the expression level of KLF9 in cancerous tissue (n=68) and normal tissue (n=68) of the patients was measured by quantitative real-time PCR (RT-qPCR). The relationship between the expression and clinical pathological features and prognosis of patients was analyzed. The expression level of KLF9 in cancerous tissue was significantly lower than that in normal tissue (P<0.05). The expression in breast cancer tissue was not significantly correlated with age, height, menstrual status, lymph node metastasis or pathological differentiation (P>0.05), but was significantly correlated with tumor size and clinical stage (P<0.05). The 1-, 2-, and 3-year survival rates in the high expression group were significantly higher than those in the low expression group (P<0.001). Univariate Cox regression analysis was carried out according to the 3-year survival of the patients, and the results showed that tumor size (P=0.009), lymph node metastasis (P=0.002), pathological differentiation (P=0.015), clinical stage (P=0.013), and KLF9 (P=0.018) were factors affecting the survival of breast cancer patients. Subsequently, multivariate Cox regression analysis of the indicators with differences showed that those indicators were independent predictors of survival of breast cancer patients. In conclusion, KLF9 expression is low in breast cancer tissue, and its expression level is related to tumor size and clinical stage. Moreover, tumor size >5 cm, lymph node metastasis, low pathological differentiation, high clinical stage and low expression of KLF9 are all important factors that cause death of patients.
Collapse
Affiliation(s)
- Zirong Jiang
- Department of Surgical Oncology, Ningde Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, P.R. China
| | - Zhiping Xu
- Department of Surgical Oncology, Ningde Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, P.R. China
| | - Tinghui Hu
- Department of Surgical Oncology, Ningde Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, P.R. China
| | - Bin Song
- Department of Surgical Oncology, Ningde Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, P.R. China
| | - Feng Li
- Department of Surgical Oncology, Ningde Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, P.R. China
| | - Kaiyin Wang
- Department of Surgical Oncology, Ningde Hospital Affiliated to Fujian Medical University, Ningde, Fujian 352100, P.R. China
| |
Collapse
|
22
|
Bortolotti D, Soffritti I, D'Accolti M, Gentili V, Di Luca D, Rizzo R, Caselli E. HHV-6A Infection of Endometrial Epithelial Cells Affects miRNA Expression and Trophoblast Cell Attachment. Reprod Sci 2020; 27:779-786. [PMID: 32046402 PMCID: PMC7077927 DOI: 10.1007/s43032-019-00102-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/13/2019] [Indexed: 02/07/2023]
Abstract
We recently reported that human herpesvirus 6 (HHV-6) infection is frequently present in endometrial tissue of women with unexplained infertility, and that virus infection induces a profound remodulation of miRNA expression in human cells of different origin. Since specific miRNA patterns have been associated with specific pregnancy outcomes, we aimed to analyze the impact of HHV-6A infection on miRNAs expression and trophoblast receptivity in human endometrial cells. To this purpose, a human endometrial cell line (HEC-1A) was infected with HHV-6A and analyzed for alterations in the expression of miRNAs and for permissiveness to the attachment of a human choriocarcinoma trophoblast cell line (JEG-3). The results showed that HHV-6A infection of endometrial cells up-modulates miR22 (26-fold), miR15 (19.5-fold), and miR196-5p (12.1 fold), that are correlated with implant failure, and down-modulates miR18 (11.4 fold), miR101-3p (4.6 fold), miR181-5p (4.9 fold), miR92 (3.3 fold), and miR1207-5p (3.9 fold), characterized by a low expression in preeclampsia. Moreover, HHV-6A-infected endometrial cells infected resulted less permissive to the attachment of trophoblast cells. In conclusion, collected data suggest that HHV-6A infection could modify miRNA expression pattern and control of trophoblast cell adhesion of endometrial cells, undermining a correct trophoblast cell attachment on endometrial cells.
Collapse
Affiliation(s)
- Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Irene Soffritti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Maria D'Accolti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Valentina Gentili
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Dario Di Luca
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy
| | - Elisabetta Caselli
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, via Luigi Borsari 46, 44121, Ferrara, Italy.
| |
Collapse
|
23
|
Expression Profile of the Chromosome 14 MicroRNA Cluster (C14MC) Ortholog in Equine Maternal Circulation throughout Pregnancy and Its Potential Implications. Int J Mol Sci 2019; 20:ijms20246285. [PMID: 31847075 PMCID: PMC6941126 DOI: 10.3390/ijms20246285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 02/06/2023] Open
Abstract
Equine chromosome 24 microRNA cluster (C24MC), the ortholog of human C14MC, is a pregnancy-related miRNA cluster. This cluster is believed to be implicated in embryonic, fetal, and placental development. The current study aimed to characterize the expression profile of this cluster in maternal circulation throughout equine gestation. The expression profile of miRNAs belonging to this cluster was analyzed in the serum of non-pregnant (diestrus), pregnant (25 d, 45 d, 4 mo, 6 mo, 10 mo), and postpartum mares. Among the miRNAs examined, 11 miRNAs were differentially expressed across the analyzed time-points. Four of these miRNAs (eca-miR-1247-3p, eca-miR-134-5p, eca-miR-382-5p, and eca-miR-433-3p) were found to be enriched in the serum of pregnant mares at Day 25 relative to non-pregnant mares. To further assess the accuracy of these miRNAs in differentiating pregnant (25 d) from non-pregnant mares, receiver operating characteristic (ROC) analysis was performed for each of these miRNAs, revealing that eca-miR-1247-3p and eca-miR-134-5p had the highest accuracy (AUCROC = 0.92 and 0.91, respectively; p < 0.05). Moreover, eca-miR-1247-3p, eca-miR-134-5p, eca-miR-409-3p, and eca-miR-379-5p were enriched in the serum of Day 45 pregnant mares. Among those miRNAs, eca-miR-1247-3p and eca-miR-409-3p retained the highest accuracy as shown by ROC analysis. GO analysis revealed that these miRNAs are mainly implicated in nervous system development as well as organ development. Using in situ hybridization, we localized eca-miR-409-3p in the developing embryo (25 d) and extra-embryonic membranes (25 and 45 d). In conclusion, the present study is the first to elucidate the circulating maternal profile of C24MC-associated miRNAs throughout pregnancy and to suggest that serum eca-miR-1247-3p, eca-miR-134-5p, and eca-miR-409-3p could be used as pregnancy-specific markers during early gestation (25 and 45 d). Overall, the high abundance of these embryo-derived miRNAs in the maternal circulation suggests an embryo-maternal communication during the equine early pregnancy.
Collapse
|
24
|
Fang L, Jiang J, Li B, Zhou Y, Freebern E, Vanraden PM, Cole JB, Liu GE, Ma L. Genetic and epigenetic architecture of paternal origin contribute to gestation length in cattle. Commun Biol 2019; 2:100. [PMID: 30886909 PMCID: PMC6418173 DOI: 10.1038/s42003-019-0341-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 02/06/2019] [Indexed: 12/19/2022] Open
Abstract
The length of gestation can affect offspring health and performance. Both maternal and fetal effects contribute to gestation length; however, paternal contributions to gestation length remain elusive. Using genome-wide association study (GWAS) in 27,214 Holstein bulls with millions of gestation records, here we identify nine paternal genomic loci associated with cattle gestation length. We demonstrate that these GWAS signals are enriched in pathways relevant to embryonic development, and in differentially methylated regions between sperm samples with long and short gestation length. We reveal that gestation length shares genetic and epigenetic architecture in sperm with calving ability, body depth, and conception rate. While several candidate genes are detected in our fine-mapping analysis, we provide evidence indicating ZNF613 as a promising candidate for cattle gestation length. Collectively, our findings support that the paternal genome and epigenome can impact gestation length potentially through regulation of the embryonic development. Lingzhao Fang et al. studied the paternal genetic variants that affect gestational length in cattle. They found that paternal genes from pathways involved in embryonic development were associated with gestation length, and that these were often found in differentially methylated regions of the genome.
Collapse
Affiliation(s)
- Lingzhao Fang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.,Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Jicai Jiang
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Bingjie Li
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ellen Freebern
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA
| | - Paul M Vanraden
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - John B Cole
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, Agricultural Research Service, USDA, Beltsville, MD, 20705, USA
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
25
|
Zhong J, Baccarelli AA, Mansur A, Adir M, Nahum R, Hauser R, Bollati V, Racowsky C, Machtinger R. Maternal Phthalate and Personal Care Products Exposure Alters Extracellular Placental miRNA Profile in Twin Pregnancies. Reprod Sci 2018; 26:289-294. [PMID: 29690855 DOI: 10.1177/1933719118770550] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Prenatal exposure to endocrine-disrupting chemicals (EDCs) exerts both short- and long-term adverse effects on the developing fetus. However, the mechanisms underlying these effects have yet to be uncovered. Maternal-fetal signaling is mediated in part by signaling molecules (eg, microRNAs [miRNAs]) contained in extracellular vesicles (EVs) that are released by the placenta into the maternal circulation. We investigated whether maternal exposure to the EDCs phthalates and personal care products alters the miRNA profile of placental-derived EVs circulating in maternal blood. Blood and urine samples from pregnant women with uncomplicated term dichorionic, diamniotic twin pregnancies were analyzed as part of a larger study investigating correlations between exposure of phthalate and personal care products and epigenetic alterations in twin pregnancies. We explored correlations between maternal urinary levels of 13 phthalate and 12 personal care products metabolites and the miRNA profile of placental EVs (EV-miRNAs) circulating in maternal blood. The expression of miR-518e was highest among women with high urinary levels of monobenzyl phthalate and methyl paraben. miR-373-3p was the least expressed in women exposed to high levels of methyl paraben, and miR-543 was significantly downregulated in women exposed to high levels of paraben metabolites, dichlorophenol metabolites, and triclosan. In conclusion, this pilot study reveals that prenatal exposure to EDCs is associated with altered profile of circulating placenta-derived EV-miRNAs. Further studies are needed to generalize these results to singleton pregnancies and to assess whether these alterations are associated with pregnancy complications.
Collapse
Affiliation(s)
- Jia Zhong
- 1 Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Andrea A Baccarelli
- 1 Environmental Precision Biosciences Laboratory, Columbia University, Mailman School of Public Health, New York, NY, USA
| | - Abdallah Mansur
- 2 Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Michal Adir
- 2 Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ravit Nahum
- 2 Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Russ Hauser
- 3 Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA.,4 Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Valentina Bollati
- 5 EPIGET LAB, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Milan, Italy
| | - Catherine Racowsky
- 6 Department of Obstetrics and Gynecology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronit Machtinger
- 2 Department of Obstetrics and Gynecology, Sheba Medical Center, Ramat-Gan and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|