1
|
Muniandy S, Few LL, Khoo BY, Hassan SA, Yvonne-Τee GB, See Too WC. Dysregulated expression of miR‑367 in disease development and its prospects as a therapeutic target and diagnostic biomarker (Review). Biomed Rep 2023; 19:91. [PMID: 37901877 PMCID: PMC10603372 DOI: 10.3892/br.2023.1673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
MicroRNA (miR)-367 has a wide range of functions in gene regulation and as such plays a critical role in cell proliferation, differentiation and development, making it an essential molecule in various physiological processes. miR-367 belongs to the miR-302/367 cluster and is located in the intronic region of human chromosome 4 on the 4q25 locus. Dysregulation of miR-367 is associated with various disease conditions, including cancer, inflammation and cardiac conditions. Moreover, miR-367 has shown promise both as a tumor suppressor and a potential diagnostic biomarker for breast, gastric and prostate cancer. The elucidation of the essential role of miR-367 in inflammation, development and cardiac diseases emphasizes its versatility in regulating various physiological processes beyond cancer biology. However, further research is necessary to fully understand the complex regulatory mechanisms involving miR-367 in different physiological and pathological contexts. In conclusion, the versatility and significance of miR-367 makes it a promising candidate for further study and in the development of new diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Shaleniprieya Muniandy
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Ling Ling Few
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Boon Yin Khoo
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Siti Asma' Hassan
- School of Medical Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Get Bee Yvonne-Τee
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| | - Wei Cun See Too
- School of Health Sciences, Health Campus, Universiti Sains Malaysia, Kubang Kerian, Kelantan 16150, Malaysia
| |
Collapse
|
2
|
Liu F, Li S. Non-coding RNAs in skin cancers:Biological roles and molecular mechanisms. Front Pharmacol 2022; 13:934396. [PMID: 36034860 PMCID: PMC9399465 DOI: 10.3389/fphar.2022.934396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cutaneous malignancies, including basal cell carcinoma, cutaneous squamous cell carcinoma, and cutaneous melanoma, are common human tumors. The incidence of cutaneous malignancies is increasing worldwide, and the leading cause of death is malignant invasion and metastasis. The molecular biology of oncogenes has drawn researchers’ attention because of the potential for targeted therapies. Noncoding RNAs, including microRNAs, long noncoding RNAs, and circular RNAs, have been studied extensively in recent years. This review summarizes the aspects of noncoding RNAs related to the metastasis mechanism of skin malignancies. Continuous research may facilitate the identification of new therapeutic targets and help elucidate the mechanism of tumor metastasis, thus providing new opportunities to improve the survival rate of patients with skin malignancies.
Collapse
|
3
|
Wu X, Tong R, Chen X, Jiang X, He X, Ma L. The miR-302s/367 Cluster Inhibits the Proliferation and Apoptosis in Sheep Fetal Fibroblasts via the Cell Cycle and PI3K-Akt Pathways. Mamm Genome 2021; 32:183-194. [PMID: 33956176 DOI: 10.1007/s00335-021-09873-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 04/26/2021] [Indexed: 01/15/2023]
Abstract
The miR-302s/367 family has the ability to induce mouse and human somatic cell reprogramming into induced pluripotent stem cells (iPSCs), inhibit the proliferation of several types of cancer cells, and even cause cancer cell apoptosis. However, the functions of the miR-302s/367 family in other mammals have not been explored. In the present study, the effects of miR-302s/367 on reprogramming, proliferation, and apoptosis in sheep fetal fibroblasts (SFFs) were evaluated by the delivery of a plasmid vector containing synthetic precursor miRNAs into cells, followed by the induction of mature miR-302s/367 expression. The results showed that miR-302s/367 could not reprogram SFFs into iPSCs; however, they could inhibit both the proliferation and apoptosis of SFFs by targeting CDK2, E2F1, E2F2, and PTEN in the cell cycle and PI3K-Akt pathways. Based on our findings, a novel mechanism was proposed in which the miR-302s/367 family functions in both the proliferation and apoptosis of somatic cells in mammals, suggesting that caution is needed when using miR-302s/367 as therapeutic agent.
Collapse
Affiliation(s)
- Xian Wu
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Ruiying Tong
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiuli Chen
- School of Biological Science and Technology, Baotou Teachers' College, Baotou, Inner Mongolia, China
| | - Xinying Jiang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Xiaoying He
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Libing Ma
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China.
| |
Collapse
|
4
|
Ghafouri-Fard S, Gholipour M, Taheri M. MicroRNA Signature in Melanoma: Biomarkers and Therapeutic Targets. Front Oncol 2021; 11:608987. [PMID: 33968718 PMCID: PMC8100681 DOI: 10.3389/fonc.2021.608987] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/30/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the utmost fatal kind of skin neoplasms. Molecular changes occurring during the pathogenic processes of initiation and progression of melanoma are diverse and include activating mutations in BRAF and NRAS genes, hyper-activation of PI3K/AKT pathway, inactivation of p53 and alterations in CDK4/CDKN2A axis. Moreover, several miRNAs have been identified to be implicated in the biology of melanoma through modulation of expression of genes being involved in these pathways. In the current review, we provide a summary of the bulk of information about the role of miRNAs in the pathobiology of melanoma, their possible application as biomarkers and their emerging role as therapeutic targets for this kind of skin cancer.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Gholipour
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kaid C, Jordan D, Bueno HMDS, Araujo BHS, Assoni A, Okamoto OK. miR-367 as a therapeutic target in stem-like cells from embryonal central nervous system tumors. Mol Oncol 2019; 13:2574-2587. [PMID: 31402560 PMCID: PMC6887591 DOI: 10.1002/1878-0261.12562] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/18/2019] [Accepted: 08/09/2019] [Indexed: 12/14/2022] Open
Abstract
Aberrant expression of the pluripotency factor OCT4A in embryonal tumors of the central nervous system (CNS) is a key factor that contributes to tumor aggressiveness and correlates with poor patient survival. OCT4A overexpression has been shown to up-regulate miR-367, a microRNA (miRNA) that regulates pluripotency in embryonic stem cells and stem-like aggressive traits in cancer cells. Here, we show that (a) miR-367 is carried in microvesicles derived from embryonal CNS tumor cells expressing OCT4A; and (b) inhibition of miR-367 in these cells attenuates their aggressive traits. miR-367 silencing in OCT4A-overexpressing tumor cells significantly reduced their proliferative and invasive behavior, clonogenic activity, and tumorsphere generation capability. In vivo, targeting of miR-367 through direct injections of a specific inhibitor into the cerebrospinal fluid of Balb/C nude mice bearing OCT4A-overexpressing tumor xenografts inhibited tumor development and improved overall survival. miR-367 was also shown to target SUZ12, one of the core components of the polycomb repressive complex 2 known to be involved in epigenetic silencing of pluripotency-related genes, including POU5F1, which encodes OCT4A. Our findings reveal possible clinical applications of a cancer stemness pathway, highlighting miR-367 as a putative liquid biopsy biomarker that could be further explored to improve early diagnosis and prognosis prediction, and potentially serve as a therapeutic target in aggressive embryonal CNS tumors.
Collapse
MESH Headings
- Animals
- Biomarkers, Tumor/antagonists & inhibitors
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Line, Tumor
- Central Nervous System Neoplasms/drug therapy
- Central Nervous System Neoplasms/genetics
- Central Nervous System Neoplasms/metabolism
- Central Nervous System Neoplasms/pathology
- Gene Silencing
- HEK293 Cells
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/antagonists & inhibitors
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neoplasms, Germ Cell and Embryonal/drug therapy
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/metabolism
- Neoplasms, Germ Cell and Embryonal/pathology
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- RNA, Neoplasm/antagonists & inhibitors
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Carolini Kaid
- Centro de Pesquisa sobre o Genoma Humano e Células‐Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloBrazil
| | - Dione Jordan
- Centro de Pesquisa sobre o Genoma Humano e Células‐Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloBrazil
| | - Heloisa Maria de Siqueira Bueno
- Centro de Pesquisa sobre o Genoma Humano e Células‐Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloBrazil
| | - Bruno Henrique Silva Araujo
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM)Campinas, São PauloBrazil
| | - Amanda Assoni
- Centro de Pesquisa sobre o Genoma Humano e Células‐Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloBrazil
| | - Oswaldo Keith Okamoto
- Centro de Pesquisa sobre o Genoma Humano e Células‐Tronco, Departamento de Genética e Biologia Evolutiva, Instituto de BiociênciasUniversidade de São PauloBrazil
| |
Collapse
|
6
|
Mu X, Mou KH, Ge R, Han D, Zhou Y, Wang LJ. Linc00961 inhibits the proliferation and invasion of skin melanoma by targeting the miR‑367/PTEN axis. Int J Oncol 2019; 55:708-720. [PMID: 31364744 PMCID: PMC6685588 DOI: 10.3892/ijo.2019.4848] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
Long intergenic noncoding RNA 00961 (Linc00961) has been identified as a tumor suppressor in various types of cancer. However, the critical roles of Linc00961 in the carcinogenesis and progression of skin melanoma (SM) are yet to be fully elucidated. The present study revealed via reverse transcription‑quantitative PCR analysis that Linc00961 was downregulated in the tissues of patients with SM compared with benign nevi, and in A375, A2058 and SK‑MEL‑28 cell lines compared with human melanocytes. Furthermore, overexpression of Linc00961 inhibited cell proliferation, and promoted the apoptosis of A375 and SK‑MEL‑28 cells in vitro and in vivo, as determined by Cell Counting Kit‑8 and flow cytometry assays, and tumor xenograft studies, respectively. Overexpression of Linc00961 also led to an attenuation of the migration and invasive capabilities of A375 and SK‑MEL‑28 cells, measured using Transwell assays. Functionally, it was demonstrated that Linc00961 acted as a competing endogenous RNA (ceRNA) by competitively sponging microRNA‑367 (miR‑367) in A375 and SK‑MEL‑28 cells; restoration of miR‑367 rescued the inhibitory effects of Linc00961 on A375 and SK‑MEL‑28 cells. Finally, it was observed that phosphate and tension homology deleted on chromosome 10 (PTEN), an established target of miR‑367 in A375 and SK‑MEL‑28 cells, was positively regulated by Linc00961, and its inhibition reversed the inhibitory effects of Linc00961 on the proliferation and invasion of A375 and SK‑MEL‑28 cells. Collectively, the present study revealed that Linc00961 was downregulated in SM, and furthermore, Linc00961 was identified as a ceRNA that inhibits the proliferation and invasion of A375 and SK‑MEL‑28 cells by modulating the miR‑367/PTEN axis.
Collapse
Affiliation(s)
- Xin Mu
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Kuan-Hou Mou
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Rui Ge
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Dan Han
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Yan Zhou
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Li-Juan Wang
- Department of Dermatology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Metformin Treatment Suppresses Melanoma Cell Growth and Motility Through Modulation of microRNA Expression. Cancers (Basel) 2019; 11:cancers11020209. [PMID: 30754729 PMCID: PMC6406940 DOI: 10.3390/cancers11020209] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/02/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Melanoma is a highly aggressive cancer with high mortality in advanced stages. Metformin is an oral biguanide drug used for diabetes and has demonstrated positive effects on cancer prevention and treatment. Herein, we found that metformin significantly suppressed melanoma cancer cell motility and growth through inducing cell cycle arrest at the G2/M phase and promoting cell apoptosis. Using the next-generation sequencing approach, we identified three upregulated microRNAs (miRNA; miR-192-5p, miR-584-3p, and miR-1246) in melanoma cells treated with metformin. Among these, we examined the roles of miR-192-5p and miR-584-3p and discovered that they significantly suppressed melanoma cell motility. Furthermore, they inhibited melanoma cell growth through destroying cell cycle progression and inducing cell apoptosis. Using microarray and bioinformatics approaches for identifying putative target genes, Epidermal growth factor (EGF) containing fibulin-like extracellular matrix protein 1 (EFEMP1) gene for miR-192-5p and an isoform of the secretory carrier membrane proteins (SCAMP3) gene for miR-584-3p could be silenced through targeting their 3′UTR region directly. EFEMP1 and SCAMP3 knockdown significantly suppressed melanoma cell growth, but only EFEMP1 knockdown inhibited its motility abilities. Our findings indicated that miR-192-5p and miR-584-3p might contribute to metformin-induced growth and motility suppression in melanoma cells through silencing their target genes EFEMP1 and SCAMP3.
Collapse
|