1
|
Liu Y, Wang J, Guo J, Zhang Q, Wang S, Hu F, Wu J, Zhao Y, Zhang J, Yu Y, Li Y, Zhang X. Pan-cancer and multi-omics analyses revealed the diagnostic and prognostic value of BAZ2A in liver cancer. Sci Rep 2024; 14:5228. [PMID: 38433277 PMCID: PMC10909891 DOI: 10.1038/s41598-024-56073-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/01/2024] [Indexed: 03/05/2024] Open
Abstract
BAZ2A, an epigenetic regulatory factor that affects ribosomal RNA transcription, has been shown to be highly expressed in several cancers and promotes tumor cell migration. This study explored the expression and mechanism of BAZ2A in tumorigenesis at the pan-cancer level. The Cancer Genome Atlas, Gene Expression Omnibus databases and TIMER2.0, cBioPortal and other tools were used to analyze the level of expression of BAZ2A in various tumor tissues and to examine the relationship between BAZ2A and survival, prognosis, mutation and immune invasion. In vitro experiments were performed to assess the function of BAZ2A in cancer cells. Using combined transcriptome and proteome analysis, we examined the possible mechanism of BAZ2A in tumors. BAZ2A exhibited high expression levels in multiple tumor tissues and displayed a significant association with cancer patient prognosis. The main type of BAZ2A genetic variation in cancer is gene mutation. Downregulation of BAZ2A inhibited proliferation, migration, and invasion and promoted apoptosis in LM6 liver cancer cell. The mechanism of BAZ2A in cancer development may involve lipid metabolism. These results help expand our understanding of BAZ2A in tumorigenesis and development and suggest BAZ2A may serve as a prognostic and diagnostic factor in several cancers.
Collapse
Affiliation(s)
- Yan Liu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China
| | - Junli Wang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Jimin Guo
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Qianyi Zhang
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Shuqing Wang
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China
- Hospital of North China University of Science and Technology, Tangshan, 063210, China
| | - Fen Hu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China
| | - Jinghua Wu
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, 063000, China
| | - Yating Zhao
- Department of Breast Center, North China University of Science and Technology Affiliated Hospital, Tangshan, 063210, China
| | - Jinghua Zhang
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
- School of Public Health, North China University of Science and Technology, Tangshan, 063210, China.
- Department of Clinical Laboratory, North China University of Science and Technology Affiliated Tangshan Maternal and Child Health Hospital, Tangshan, 063000, China.
| | - Yuan Yu
- College of Life Science, North China University of Science and Technology, Tangshan, 063210, China.
| | - Yufeng Li
- Hebei Key Laboratory of Molecular Oncology, Tangshan, 063001, China.
- The Cancer Institute, Tangshan People's Hospital, Tangshan, 063001, China.
| | - Xiaojun Zhang
- Department of Oncology, People's Hospital of Zunhua, Tangshan, 064200, China.
| |
Collapse
|
2
|
Roganowicz M, Bär D, Bersaglieri C, Aprigliano R, Santoro R. BAZ2A-RNA mediated association with TOP2A and KDM1A represses genes implicated in prostate cancer. Life Sci Alliance 2023; 6:e202301950. [PMID: 37184661 PMCID: PMC10130768 DOI: 10.26508/lsa.202301950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/16/2023] Open
Abstract
BAZ2A represses rRNA genes (rDNA) that are transcribed by RNA polymerase I. In prostate cancer (PCa), BAZ2A function goes beyond this role because it represses genes frequently silenced in metastatic disease. However, the mechanisms of this BAZ2A-mediated repression remain elusive. Here, we show that BAZ2A represses genes through its RNA-binding TAM domain using mechanisms differing from rDNA silencing. Although the TAM domain mediates BAZ2A recruitment to rDNA, in PCa, this is not required for BAZ2A association with target genes. Instead, the BAZ2A-TAM domain in association with RNA mediates the interaction with topoisomerase 2A (TOP2A) and histone demethylase KDM1A, whose expression positively correlates with BAZ2A levels in localized and metastatic PCa. TOP2A and KDM1A pharmacological inhibition up-regulate BAZ2A-repressed genes that are regulated by inactive enhancers bound by BAZ2A, whereas rRNA genes are not affected. Our findings showed a novel RNA-based mechanism of gene regulation in PCa. Furthermore, we determined that RNA-mediated interactions between BAZ2A and TOP2A and KDM1A repress genes critical to PCa and may prove to be useful to stratify prostate cancer risk and treatment in patients.
Collapse
Affiliation(s)
- Marcin Roganowicz
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
- RNA Biology Program, Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Dominik Bär
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Cristiana Bersaglieri
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Rossana Aprigliano
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Genetic Polymorphisms Associated with Prothrombin Time and Activated Partial Thromboplastin Time in Chinese Healthy Population. Genes (Basel) 2022; 13:genes13101867. [PMID: 36292752 PMCID: PMC9602091 DOI: 10.3390/genes13101867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022] Open
Abstract
(1) Background: The purpose of this study was to evaluate the effect of gene polymorphisms on prothrombin time (PT) and activated partial thromboplastin time (APTT) in a healthy Chinese population. (2) Methods: A total of 403 healthy volunteers from a series of novel oral anticoagulants (NOACs) bioequivalence trials in China were included. Coagulation tests for PT and APTT were performed in the central lab at Peking University First Hospital. Whole-exome sequencing (WES) and genome-wide association analysis were performed. (3) Results: In the correlation analysis of PT, 105 SNPs from 84 genes reached the genome-wide significance threshold (p < 1 × 10−5). Zinc Finger Protein 594 (ZNF594) rs184838268 (p = 4.50 × 10−19) was most significantly related to PT, and Actinin Alpha 1 (ACTN1) was found to interact most with other candidate genes. Significant associations with previously reported candidate genes Aurora Kinase B (AURKB), Complement C5(C5), Clock Circadian Regulator (CLOCK), and Histone Deacetylase 9(HDAC9) were detected in our dataset (p < 1 × 10−5). PiggyBac Transposable Element Derived 2(PGBD2) rs75935520 (p = 4.49 × 10−6), Bromodomain Adjacent To Zinc Finger Domain 2A(BAZ2A) rs199970765 (p = 5.69 × 10−6) and Protogenin (PRTG) rs80064850 (p = 8.69 × 10−6) were significantly correlated with APTT (p < 1 × 10−5). The heritability values of PT and APTT were 0.83 and 0.64, respectively; (4) Conclusion: The PT and APTT of healthy populations are affected by genetic polymorphisms. ZNF594 and ACTN1 variants could be novel genetic markers of PT, while PRTG polymorphisms might be associated with APTT levels. The findings could be attributed to ethnic differences, and need further investigation.
Collapse
|
4
|
LINC00885 promotes cervical cancer progression through sponging miR-3150b-3p and upregulating BAZ2A. Biol Direct 2022; 17:4. [PMID: 35012615 PMCID: PMC8744347 DOI: 10.1186/s13062-021-00314-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 11/29/2021] [Indexed: 12/30/2022] Open
Abstract
Background Cervical cancer (CC) is one of the most common malignancies affecting female worldwide. Long non-coding RNAs (lncRNAs) are increasingly indicated as crucial participants and promising therapeutic targets in human cancers. The main objective of this study was to explore the functions and mechanism of LINC00885 in CC. Methods RT-qPCR and western blot were used to detect RNA and protein levels. Functional and mechanism assays were respectively done for the analysis of cell behaviors and molecular interplays. Results Long intergenic non-coding RNA 885 (LINC00885) was discovered to be upregulated in CC tissues and cell lines through bioinformatics analysis and RT-qPCR. Overexpression of LINC00885 promoted proliferation and inhibited apoptosis, whereas its silence exerted opposite effects. The cytoplasmic localization of LINC00885 was ascertained and furthermore, LINC00885 competitively bound with miR-3150b-3p to upregulate BAZ2A expression in CC cells. Rescue assays confirmed that LINC00885 regulated CC proliferation and apoptosis through miR-3150b-3p/BAZ2A axis. Finally, we confirmed that LINC00885 aggravated tumor growth through animal experiments. Conclusions LINC00885 exerted oncogenic function in CC via regulating miR-3150b-3p/BAZ2A axis. These findings suggested LINC00885 might serve as a potential promising therapeutic target for CC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00314-6.
Collapse
|
5
|
Li Y, Gong H, Wang P, Zhu Y, Peng H, Cui Y, Li H, Liu J, Wang Z. The emerging role of ISWI chromatin remodeling complexes in cancer. J Exp Clin Cancer Res 2021; 40:346. [PMID: 34736517 PMCID: PMC8567610 DOI: 10.1186/s13046-021-02151-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Disordered chromatin remodeling regulation has emerged as an essential driving factor for cancers. Imitation switch (ISWI) family are evolutionarily conserved ATP-dependent chromatin remodeling complexes, which are essential for cellular survival and function through multiple genetic and epigenetic mechanisms. Omics sequencing and a growing number of basic and clinical studies found that ISWI family members displayed widespread gene expression and genetic status abnormalities in human cancer. Their aberrant expression is closely linked to patient outcome and drug response. Functional or componential alteration in ISWI-containing complexes is critical for tumor initiation and development. Furthermore, ISWI-non-coding RNA regulatory networks and some non-coding RNAs derived from exons of ISWI member genes play important roles in tumor progression. Therefore, unveiling the transcriptional regulation mechanism underlying ISWI family sparked a booming interest in finding ISWI-based therapies in cancer. This review aims at describing the current state-of-the-art in the role of ISWI subunits and complexes in tumorigenesis, tumor progression, immunity and drug response, and presenting deep insight into the physiological and pathological implications of the ISWI transcription machinery in cancers.
Collapse
Affiliation(s)
- Yanan Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Han Gong
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Pan Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Yu Zhu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Hongling Peng
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yajuan Cui
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Heng Li
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Jing Liu
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China
| | - Zi Wang
- Department of Hematology, Institute of Molecular Hematology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
- Molecular Biology Research Center and Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, 410078, Hunan, China.
| |
Collapse
|
6
|
Jiang X, Chu Z, Cao Y, Tang Y, Shi Y, Shi X. PDLIM2 prevents the malignant phenotype of hepatocellular carcinoma cells by negatively regulating β-catenin. Cancer Gene Ther 2021; 28:1113-1124. [PMID: 33398035 DOI: 10.1038/s41417-020-00257-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/30/2020] [Accepted: 10/30/2020] [Indexed: 11/09/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies and leading causes of cancer-related deaths globally. Despite significant advances in therapy, the molecular mechanisms underlying HCC development and progression remain unclear. Here, we aimed to explore the potential role of PDLIM2 in the development and epithelial-mesenchymal transition (EMT) of HCC via a possible modulation of β-catenin. We first confirmed that PDLIM2 was downregulated in HCC tissues and cells and found lower PDLIM2 expression was associated with worse prognosis in HCC patients. Loss- and gain- of function experiments were performed to evaluate the roles of PDLIM2 and β-catenin in HCC cell proliferation, migration, invasion, EMT, and colony formation. EMT was determined based on the levels of E-cadherin, zonula occludens-1, N-cadherin, and vimentin expression. In vivo, the roles of PDLIM2 and β-catenin in HCC were investigated by using a nude mouse xenograft model. It should be noted that PDLIM2 led to the inhibition of β-catenin activity and its downstream gene expression. Importantly, ectopic PDLIM2 expression inhibited the proliferation, migration, invasion, and EMT of HCC cells by reducing β-catenin expression both in vitro and in vivo, thereby suppressing the occurrence and progression of HCC. Taken together, our results demonstrated that overexpressed PDLIM2 exerts a tumor-suppressive role in HCC by regulating β-catenin. This study suggests that the PDLIM2 may be a promising target for the treatment of HCC.
Collapse
Affiliation(s)
- Xiaoming Jiang
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China.,Department of Emergency, the First Hospital of Jilin University, Changchun, 130000, China
| | - Zhe Chu
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China.,Department of Emergency, the First Hospital of Jilin University, Changchun, 130000, China
| | - Yang Cao
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China
| | - Ying Tang
- Department of Respiration, the First Hospital of Jilin University, Changchun, 130000, China
| | - Ying Shi
- Department of Hepatology, Medical School of Jilin University, Changchun, 130000, China.
| | - Xu Shi
- Clinical Laboratory, the First Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
7
|
Bevill SM, Olivares-Quintero JF, Sciaky N, Golitz BT, Singh D, Beltran AS, Rashid NU, Stuhlmiller TJ, Hale A, Moorman NJ, Santos CM, Angus SP, Zawistowski JS, Johnson GL. GSK2801, a BAZ2/BRD9 Bromodomain Inhibitor, Synergizes with BET Inhibitors to Induce Apoptosis in Triple-Negative Breast Cancer. Mol Cancer Res 2019; 17:1503-1518. [PMID: 31000582 PMCID: PMC6610760 DOI: 10.1158/1541-7786.mcr-18-1121] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Screening of an inhibitor library targeting kinases and epigenetic regulators identified several molecules having antiproliferative synergy with extraterminal domain (BET) bromodomain (BD) inhibitors (JQ1, OTX015) in triple-negative breast cancer (TNBC). GSK2801, an inhibitor of BAZ2A/B BDs, of the imitation switch chromatin remodeling complexes, and BRD9, of the SWI/SNF complex, demonstrated synergy independent of BRD4 control of P-TEFb-mediated pause-release of RNA polymerase II. GSK2801 or RNAi knockdown of BAZ2A/B with JQ1 selectively displaced BRD2 at promoters/enhancers of ETS-regulated genes. Additional displacement of BRD2 from rDNA in the nucleolus coincided with decreased 45S rRNA, revealing a function of BRD2 in regulating RNA polymerase I transcription. In 2D cultures, enhanced displacement of BRD2 from chromatin by combination drug treatment induced senescence. In spheroid cultures, combination treatment induced cleaved caspase-3 and cleaved PARP characteristic of apoptosis in tumor cells. Thus, GSK2801 blocks BRD2-driven transcription in combination with BET inhibitor and induces apoptosis of TNBC. IMPLICATIONS: Synergistic inhibition of BDs encoded in BAZ2A/B, BRD9, and BET proteins induces apoptosis of TNBC by a combinatorial suppression of ribosomal DNA transcription and ETS-regulated genes.
Collapse
Affiliation(s)
- Samantha M Bevill
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jose F Olivares-Quintero
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Noah Sciaky
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Brian T Golitz
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Darshan Singh
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Adriana S Beltran
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Naim U Rashid
- Department of Biostatistics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Timothy J Stuhlmiller
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Andrew Hale
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Nathaniel J Moorman
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Charlene M Santos
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Steven P Angus
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Jon S Zawistowski
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Gary L Johnson
- Department of Pharmacology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, North Carolina.
| |
Collapse
|