1
|
Scaravilli A, Tranfa M, Pontillo G, Brais B, De Michele G, La Piana R, Saccà F, Santorelli FM, Synofzik M, Brunetti A, Cocozza S. A Review of Brain and Pituitary Gland MRI Findings in Patients with Ataxia and Hypogonadism. CEREBELLUM (LONDON, ENGLAND) 2024; 23:757-774. [PMID: 37155088 DOI: 10.1007/s12311-023-01562-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2023] [Indexed: 05/10/2023]
Abstract
The association of cerebellar ataxia and hypogonadism occurs in a heterogeneous group of disorders, caused by different genetic mutations often associated with a recessive inheritance. In these patients, magnetic resonance imaging (MRI) plays a pivotal role in the diagnostic workflow, with a variable involvement of the cerebellar cortex, alone or in combination with other brain structures. Neuroimaging involvement of the pituitary gland is also variable. Here, we provide an overview of the main clinical and conventional brain and pituitary gland MRI imaging findings of the most common genetic mutations associated with the clinical phenotype of ataxia and hypogonadism, with the aim of helping neuroradiologists in the identification of these disorders.
Collapse
Affiliation(s)
- Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Mario Tranfa
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
- Department of Electrical Engineering and Information Technology (DIETI), University of Naples "Federico II", Naples, Italy
| | - Bernard Brais
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Giovanna De Michele
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | - Roberta La Piana
- Department of Neurology and Neurosurgery, Montreal Neurological Hospital and Institute, Montreal, Canada
| | - Francesco Saccà
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University of Naples "Federico II", Naples, Italy
| | | | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), Tubingen, Germany
- Division Translational Genomics of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Otfried-Müller-Strasse 27, 72076, Tubingen, Germany
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
2
|
Gong H, You X, Jin M, Meng Y, Zhang H, Yang S, Xu J. Graph neural network and multi-data heterogeneous networks for microbe-disease prediction. Front Microbiol 2022; 13:1077111. [PMID: 36620040 PMCID: PMC9814480 DOI: 10.3389/fmicb.2022.1077111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
The research on microbe association networks is greatly significant for understanding the pathogenic mechanism of microbes and promoting the application of microbes in precision medicine. In this paper, we studied the prediction of microbe-disease associations based on multi-data biological network and graph neural network algorithm. The HMDAD database provided a dataset that included 39 diseases, 292 microbes, and 450 known microbe-disease associations. We proposed a Microbe-Disease Heterogeneous Network according to the microbe similarity network, disease similarity network, and known microbe-disease associations. Furthermore, we integrated the network into the graph convolutional neural network algorithm and developed the GCNN4Micro-Dis model to predict microbe-disease associations. Finally, the performance of the GCNN4Micro-Dis model was evaluated via 5-fold cross-validation. We randomly divided all known microbe-disease association data into five groups. The results showed that the average AUC value and standard deviation were 0.8954 ± 0.0030. Our model had good predictive power and can help identify new microbe-disease associations. In addition, we compared GCNN4Micro-Dis with three advanced methods to predict microbe-disease associations, KATZHMDA, BiRWHMDA, and LRLSHMDA. The results showed that our method had better prediction performance than the other three methods. Furthermore, we selected breast cancer as a case study and found the top 12 microbes related to breast cancer from the intestinal flora of patients, which further verified the model's accuracy.
Collapse
Affiliation(s)
- Houwu Gong
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China,Academy of Military Sciences, Beijing, China
| | - Xiong You
- Center of Rehabilitation Diagnosis and Treatment, Hunan Provincial Rehabilitation Hospital, Changsha, China
| | - Min Jin
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China,*Correspondence: Min Jin, ✉
| | - Yajie Meng
- School of Computer Science and Artificial Intelligence, Wuhan Textile University, Wuhan, China
| | - Hanxue Zhang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Shuaishuai Yang
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Junlin Xu
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China,Junlin Xu, ✉
| |
Collapse
|
3
|
He J, Liu X, Liu L, Zeng S, Shan S, Liao Z. Identification of Novel Compound Heterozygous Variants of the PNPLA6 Gene in Boucher-Neuhäuser Syndrome. Front Genet 2022; 13:810537. [PMID: 35198007 PMCID: PMC8859865 DOI: 10.3389/fgene.2022.810537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/05/2022] [Indexed: 12/11/2022] Open
Abstract
Background: Boucher–Neuhäuser syndrome (BNS, MIM 215470) is a rare autosomal recessive syndrome caused by mutations in the PNPLA6 gene. Few BNS cases have been reported for functional validation at the RNA level. Herein, we report on the family of a 17-year-old girl with clinical characteristics of BNS, genetic validation, and a systematic review of PNPLA6 variants related to BNS. Methods: Clinical data and blood samples were collected from the patient and their parents, and whole-exome sequencing was performed and confirmed by Sanger sequencing. RNA-sequencing (RNA-Seq) and quantitative RT-PCR (qRT-PCR) were performed, and the three-dimensional protein structures of the variants were predicted. Results: We report a 17-year-old female with progressive night blindness since the age of four, primary amenorrhea, and non-development of secondary sexual characteristics. Her impaired vision was diagnosed as retinal pigmentary degeneration of the retina. She had congenital hypogonadotropic hypogonadism (CHH) but no cerebellar ataxia at present. Two novel compound heterozygous variants (c.2241del/p.Met748TrpfsTer65 and c.2986A>G/p.Thr996Ala) of the PNPLA6 gene (NM_006702.4) were identified by whole-exome sequencing. The former variant was carried from her healthy father and has not been reported previously. The latter was inherited from her healthy mother and was noted in a report without functional studies. The RT-PCR results showed that the mRNA expression of PNPLA6 was lower in this patient and her father than in the control group. She was diagnosed with BNS. Both variants (c.2241del and c.2986A>G) were likely pathogenic according to the ACMG criteria. The novel variants in the PNPLA6 gene related to Boucher–Neuhäuser syndrome were summarized in this article. Conclusion: The possibility of Boucher–Neuhäuser syndrome should be considered when patients present with night blindness, impaired vision, and hypogonadotropic hypogonadism. Gene sequencing is currently the primary diagnostic method. Herein, novel compound heterozygous variants of PNPLA6 were identified in a BNS patient, and its function was verified at the RNA level. The PNPLA6 c.2241del variant is novel and potentially pathogenic, expanding the mutation spectrum in PNPLA6.
Collapse
Affiliation(s)
- Junyu He
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Liu
- Aegicare Technology Co., Ltd., Shenzhen, China
| | - Liyi Liu
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaohao Zeng
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shuanghong Shan
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihong Liao
- Department of Endocrinology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
4
|
Nanetti L, Di Bella D, Magri S, Fichera M, Sarto E, Castaldo A, Mongelli A, Baratta S, Fenu S, Moscatelli M, Bonati MT, Martinuzzi A, Mariotti C, Taroni F. Multifaceted and Age-Dependent Phenotypes Associated With Biallelic PNPLA6 Gene Variants: Eight Novel Cases and Review of the Literature. Front Neurol 2022; 12:793547. [PMID: 35069422 PMCID: PMC8770815 DOI: 10.3389/fneur.2021.793547] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022] Open
Abstract
A wide spectrum of neurodegenerative diseases has been associated with pathogenic variants in the PNPLA6 (patatin-like phospholipase domain-containing protein 6) gene, including spastic paraplegia type 39, Gordon-Holmes, Boucher-Neuhauser, Oliver-Mc Farlane, and Laurence-Moon syndromes. These syndromes present variable and overlapping clinical symptoms, encompassing cerebellar ataxia, hypogonadotropic hypogonadism, chorioretinal dystrophy, spastic paraplegia, muscle wasting, peripheral neuropathy, and cognitive impairment. In the present study, we performed a wide genetic screening in 292 patients presenting with ataxia or spastic paraplegia using a probe-based customized gene panel, covering >200 genes associated with spinocerebellar diseases. We identified six novel and four recurrent PNPLA6 gene variants in eight patients (2.7%). Six patients presented an infantile or juvenile onset (age <18), and two patients had an adult onset. Cerebellar ataxia was observed in seven patients and spastic paraplegia in one patient. Progression of cerebellar symptoms was slow in all patients, who retained ambulation even after a mean disease duration of 15 years. Brain MRI showed cerebellar atrophy in 6/8 patients, more pronounced in superior and dorsal vermis lobules (I to VII). Additional clinical features included hypogonadotropic hypogonadism (5/8), growth hormone deficiency (2/8), peripheral axonal neuropathy (4/8), cognitive impairment (3/8), chorioretinal dystrophy (2/8), and bilateral vestibular areflexia with a reduced visual vestibule-ocular reflex (1/8). In accordance with previous studies, chorioretinal dystrophy was the most frequent presenting symptom in early onset patients, hypogonadotropic hypogonadism in juvenile onset cases, and cerebellar ataxia in adult patients. One patient had an initial clinical presentation compatible with Cerebellar Ataxia with Neuropathy and Vestibular Areflexia Syndrome (CANVAS), but no pathological expansions in the RFC1 gene. In conclusion, patients with PNPLA6 variants present a variable age of onset spanning from infancy to adulthood, and each clinical symptom has an age-dependent manifestation thus requiring a multi-systemic diagnostic approach. The description of patients presenting very late-onset cerebellar ataxia suggests that PNPLA6 genetic screening should also be considered in the diagnostic workout of adult cerebellar ataxia.
Collapse
Affiliation(s)
- Lorenzo Nanetti
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Di Bella
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mario Fichera
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elisa Sarto
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Anna Castaldo
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessia Mongelli
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Baratta
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Silvia Fenu
- Unit of Rare Neurodegenerative and Neurometabolic Diseases, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Moscatelli
- Unit of Neuroradiology, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Teresa Bonati
- Unit of Medical Genetics, Institute for Maternal and Child Health Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Burlo Garofalo, Trieste, Italy
| | - Andrea Martinuzzi
- Conegliano Research Center, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Eugenio Medea, Conegliano, Italy
| | - Caterina Mariotti
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
5
|
Drosophila Lysophospholipase Gene swiss cheese Is Required for Survival and Reproduction. INSECTS 2021; 13:insects13010014. [PMID: 35055857 PMCID: PMC8781823 DOI: 10.3390/insects13010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022]
Abstract
Simple Summary Biological evolution implies fitness of newly evolved organisms that have inherent adaptive traits because of mutations in genes. However, most mutations are detrimental, and they spoil the organism’s life, its survival and its ability to leave progeny. Some genes are extremely vital for an organism, and therefore, they tend to save their structure and do not mutate or do it very composedly. That is the case of the gene encoding PNPLA6 lysophospholipase domain that evolved in bacteria, and evolution obliged it to save its function in higher animals. In mammals, complete dysfunction of such a gene is lethal because of its high importance in placenta for early embryo development. Why is it conserved in other species, for instance insects, that have no placenta? Here we studied the role of the PNPLA6-encoding gene named swiss cheese in Drosophila melanogaster fitness. We have found that its dysfunction results in premature death of specimens and their inability to leave enough progeny. Thus, we provide the first evidence for significance of the gene that encodes the lysophospholipase enzyme in fitness of insects. Abstract Drosophila melanogaster is one of the most famous insects in biological research. It is widely used to analyse functions of different genes. The phosphatidylcholine lysophospholipase gene swiss cheese was initially shown to be important in the fruit fly nervous system. However, the role of this gene in non-nervous cell types has not been elucidated yet, and the evolutional explanation for the conservation of its function remains elusive. In this study, we analyse expression pattern and some aspects of the role of the swiss cheese gene in the fitness of Drosophila melanogaster. We describe the spatiotemporal expression of swiss cheese throughout the fly development and analyse the survival and productivity of swiss cheese mutants. We found swiss cheese to be expressed in salivary glands, midgut, Malpighian tubes, adipocytes, and male reproductive system. Dysfunction of swiss cheese results in severe pupae and imago lethality and decline of fertility, which is impressive in males. The latter is accompanied with abnormalities of male locomotor activity and courtship behaviour, accumulation of lipid droplets in testis cyst cells and decrease in spermatozoa motility. These results suggest that normal swiss cheese is important for Drosophila melanogaster fitness due to its necessity for both specimen survival and their reproductive success.
Collapse
|
6
|
Gonzalez-Latapi P, Sousa M, Lang AE. Movement Disorders Associated with Hypogonadism. Mov Disord Clin Pract 2021; 8:997-1011. [PMID: 34631935 DOI: 10.1002/mdc3.13308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 07/03/2021] [Indexed: 11/10/2022] Open
Abstract
A variety of movement disorders can be associated with hypogonadism. Identification of this association may aid in guiding workup and reaching an accurate diagnosis. We conducted a comprehensive and structured search to identify the most common movement disorders associated with hypogonadism. Only Case Reports and Case Series articles were included. Ataxia was the most common movement disorder associated with hypogonadism, including entities such as Gordon-Holmes syndrome, Boucher-Neuhäuser, Marinesco-Sjögren and Perrault syndrome. Tremor was also commonly described, particularly with aneuploidies such as Klinefelter syndrome and Jacob's syndrome. Other rare conditions including mitochondrial disorders and Woodhouse-Sakati syndrome are associated with dystonia and parkinsonism and either hypo or hypergonadotropic hypogonadism. We also highlight those entities where a combination of movement disorders is present. Hypogonadism may be more commonly associated with movement disorders than previously appreciated. It is important for the clinician to be aware of this association, as well as accompanying symptoms in order to reach a precise diagnosis.
Collapse
Affiliation(s)
- Paulina Gonzalez-Latapi
- The Edmond J. Safra Program for Parkinson Disease, Movement Disorder Clinic Toronto Western Hospital, University Health Network Toronto Ontario Canada
| | - Mario Sousa
- The Edmond J. Safra Program for Parkinson Disease, Movement Disorder Clinic Toronto Western Hospital, University Health Network Toronto Ontario Canada
| | - Anthony E Lang
- The Edmond J. Safra Program for Parkinson Disease, Movement Disorder Clinic Toronto Western Hospital, University Health Network Toronto Ontario Canada.,Division of Neurology, Department of Medicine University of Toronto Toronto Ontario Canada
| |
Collapse
|
7
|
Azmy Abd El-Motelp B, Tarek Ebrahim M, Khairy Mohamed H. Salvia officinalis Extract and 17β-Estradiol Suppresses Ovariectomy Induced Osteoporosis in Female Rats. Pak J Biol Sci 2021; 24:434-444. [PMID: 34486329 DOI: 10.3923/pjbs.2021.434.444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Osteoporosis is a progressive metabolic disorder characterized by an impaired bone formation that leads to increased morbidity and mortality.<i> Salvia officinalis </i>is a source of phytoestrogens that could help mitigate the risk of osteoporotic rat fracture by exerting sex hormones. Therefore, the present study was designed to investigate the curative effect of <i>Salvia officinalis </i>Extract<i> </i>(SOE) and<i> </i>17β-estradiol (E<sub>2</sub>) and their combination<i> </i>on bone loss in female rats with ovariectomy-induced estrogen deficiency <b>Materials and Methods:</b> Forty adult female albino rats were divided into five groups, which included Sham control (Sham), ovariectomy (OVX), OVX+SOE, OVX+E<sub>2</sub> and OVX +SOE+E<sub>2</sub>.<i> </i>SOE (10 mL kg<sup></sup><sup>1</sup>) and E<sub>2</sub> (30 μg kg<sup></sup><sup>1</sup>) had been daily gavaged in the OVX+SOE, OVX+E<sub>2</sub> and OVX+SOE+E<sub>2</sub>, respectively for 6-weeks. <b>Results:</b> The model of ovariectomy resulted in osteoporosis as demonstrated by the decreased serum Ca, P, vitamin D, E<sub>2</sub> level associated with a significant increase in PTH levels in comparison to the sham control group. Besides, OVX to rats caused up-regulation in the levels of CTX-1, P1NP, BALP, OC and RANKL comparable to the sham control group. Moreover, SOE and E<sub>2</sub> significantly modulated the calciotropic parameters and improved all bone turnover markers as well as RANKL as compared to the OVX group. However, Histopathological and immunohistochemical results showed defective mineralization with the destruction of the bone matrix and increased TNF-α expression from the OVX group relative to the treated groups. <b>Conclusion:</b> These results suggest that both SOE and E<sub>2</sub> or their combined administration are efficient inhibitors against ovariectomy-induced bone loss in female rats.
Collapse
|
8
|
Doğan M, Eröz R, Öztürk E. Chorioretinal dystrophy, hypogonadotropic hypogonadism, and cerebellar ataxia: Boucher-Neuhauser syndrome due to a homozygous (c.3524C>G (p.Ser1175Cys)) variant in PNPLA6 gene. Ophthalmic Genet 2021; 42:276-282. [PMID: 33650466 DOI: 10.1080/13816810.2021.1894461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Purpose: The current study aims to raise awareness of Boucher - Neuhauser syndrome (BNHS) that occurs as a rare phenotype due to biallelic pathogenic variants in the PNPLA6 gene.Methods: Detailed family histories and clinical data were recorded. Whole exome sequencing was performed and co-segregation analysis of the family was done by sanger sequencing. Also, review of 28 molecularly confirmed patients with BNHS from the literature was evaluated.Results: We identified a missense homozygous variant (c.3524 C > G (p.Ser1175Cys)) in the PNPLA6 gene, which explains the phenotype of the patient and neurologic, ophthalmologic, endocrine, and genetic evaluations established a diagnosis of BNHS. Symptoms, ethnicity, clinical and genetic findings of 28 molecularly confirmed patients with BNHS from the literature were also presented.Conclusion: We present the main findings of a Turkish family with BNHS together with detailed clinical and genetic profiles of patients diagnosed as BNHS that have been molecularly confirmed in the literature so far.
Collapse
Affiliation(s)
- Mustafa Doğan
- Department of Medical Genetics, Malatya Turgut Özal University Medical Faculty, Malatya, Turkey
| | - Recep Eröz
- Department of Medical Genetics, Duzce University Medical Faculty, Duzce, Turkey
| | - Emrah Öztürk
- Department of Ophthalmology, Malatya Training and Research Hospital, Malatya, Turkey
| |
Collapse
|
9
|
Wu S, Sun Z, Zhu T, Weleber RG, Yang P, Wei X, Pennesi ME, Sui R. Novel variants in PNPLA6 causing syndromic retinal dystrophy. Exp Eye Res 2020; 202:108327. [PMID: 33141049 DOI: 10.1016/j.exer.2020.108327] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022]
Abstract
PNPLA6-related disorders include several phenotypes, such as Boucher-Neuhäuser syndrome, Gordon Holmes syndrome, spastic paraplegia, photoreceptor degeneration, Oliver-McFarlane syndrome and Laurence-Moon syndrome. In this study, detailed clinical evaluations and genetic testing were performed in five (4 Chinese and 1 Caucasian/Chinese) syndromic retinal dystrophy patients. Genotype-phenotype correlations were analyzed based on review of the literatures of previously published PNPLA6-related cases. The mean age of patients and at first visit were 20.8 years (11, 12, 25, 28, 28) and 14.2 years (4, 7, 11, 24, 25), respectively. They all presented with severe chorioretinal dystrophy and profoundly decreased vision. The best corrected visual acuity (BCVA) ranged from 20/200 to 20/2000. Systemic manifestations included cerebellar ataxia, hypogonadotropic hypogonadism and hair anomalies. Six novel and three reported pathogenic variants in PNPLA6 (NM_001166111) were identified. The genotypes of the five cases are: c.3134C > T (p.Ser1045Leu) and c.3846+1G > A, c.3547C > T (p.Arg1183Trp) and c.1841+3A > G, c.3436G > A (p.Ala1146Thr) and c.2212-10A > G, c.3436G > A (p.Ala1146Thr) and c.2266C > T (p.Gln756*), c.1238_1239insC (p.Leu414Serfs*28) and c.3130A > G (p.Thr1044Ala). RT-PCR confirmed that the splicing variants indeed led to abnormal splicing. Missense variants p.Thr1044Ala, p.Ser1045Leu, p.Ala1146Thr, p.Arg1183Trp and c.3846+1G > A are located in Patatin-like phospholipase (Pat) domain. In conclusion, we report the phenotypes in five patients with PNPLA6 associated syndromic retinal dystrophy with variable systemic involvement and typical choroideremia-like fundus changes. Ocular manifestations may be the first and the only findings for years. All of our patients carried one severe deleterious variant (stop-gain or splicing variant) and one milder variant (missense variant). Retinal involvement was significantly correlated with severe deleterious variants and variants in Pat domain.
Collapse
Affiliation(s)
- Shijing Wu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zixi Sun
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Tian Zhu
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Richard G Weleber
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Paul Yang
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA
| | - Xing Wei
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, USA.
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
10
|
O’Neil E, Serrano L, Scoles D, Cunningham KE, Han G, Chiang J, Bennett J, Aleman TS. Detailed retinal phenotype of Boucher-Neuhäuser syndrome associated with mutations in PNPLA6 mimicking choroideremia. Ophthalmic Genet 2019; 40:267-275. [DOI: 10.1080/13816810.2019.1605392] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Erin O’Neil
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Leona Serrano
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Drew Scoles
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Grace Han
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - John Chiang
- Molecular Vision Laboratory, Hillsboro, OR, USA
| | - Jean Bennett
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tomas S. Aleman
- Scheie Eye Institute and the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- The Center for Advanced Retinal and Ocular Therapeutics, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|