1
|
Xu W, Yang T, Zhang J, Li H, Guo M. Rhodiola rosea: a review in the context of PPPM approach. EPMA J 2024; 15:233-259. [PMID: 38841616 PMCID: PMC11147995 DOI: 10.1007/s13167-024-00367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/08/2024] [Indexed: 06/07/2024]
Abstract
A natural "medicine and food" plant, Rhodiola rosea (RR) is primarily made up of organic acids, phenolic compounds, sterols, glycosides, vitamins, lipids, proteins, amino acids, trace elements, and other physiologically active substances. In vitro, non-clinical and clinical studies confirmed that it exerts anti-inflammatory, antioxidant, and immune regulatory effects, balances the gut microbiota, and alleviates vascular circulatory disorders. RR can prolong life and has great application potential in preventing and treating suboptimal health, non-communicable diseases, and COVID-19. This narrative review discusses the effects of RR in preventing organ damage (such as the liver, lung, heart, brain, kidneys, intestines, and blood vessels) in non-communicable diseases from the perspective of predictive, preventive, and personalised medicine (PPPM/3PM). In conclusion, as an adaptogen, RR can provide personalised health strategies to improve the quality of life and overall health status.
Collapse
Affiliation(s)
- Wenqian Xu
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | | | - Jinyuan Zhang
- The Third People’s Hospital of Henan Province, Zhengzhou, China
| | - Heguo Li
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Min Guo
- Department of Spleen, Stomach, Liver and Gallbladder, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| |
Collapse
|
2
|
Kumar S, Das A. A Cocktail of Natural Compounds Holds Promise for New Immunotherapeutic Potential in Head and Neck Cancer. Chin J Integr Med 2024; 30:42-51. [PMID: 37118529 DOI: 10.1007/s11655-023-3694-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 04/30/2023]
Abstract
OBJECTIVE To obtain detailed understanding on the gene regulation of natural compounds in altering prognosis of head and neck squamous cell carcinomas (HNSC). METHODS Gene expression data of HNSC samples and peripheral blood mononuclear cells (PBMCs) of HNSC patients were collected from Gene Expression Omnibus (GEO). Differential gene expression analysis of GEO datasets were achieved by the GEO2R tool. Common differentially expressed gerres (DEGs) were screened by comparing DEGs of HNSC with those of PBMCs. The combination was further analyzed for regulating pathways and biological processes that were affected. RESULTS Totally 110 DEGs were retrieved and identified to be involved in biological processes related to tumor regulation. Then 102 natural compounds were screened for a combination such that the expression of all 110 commonly DEGs was altered. A combination of salidroside, ginsenoside Rd, oridonin, britanin, and scutellarein was chosen. A multifaceted, multi-dimensional tumor regression was showed by altering autophagy, apoptosis, inhibiting cell proliferation, angiogenesis, metastasis and inflammatory cytokines production. CONCLUSIONS This study has helped develop a unique combination of natural compounds that will markedly reduce the propensity of development of drug resistance in tumors and immune evasion by tumors. The result is crucial to developing a combinatorial natural therapeutic cocktail with accentuated immunotherapeutic potential.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India
| | - Asmita Das
- Department of Biotechnology, Delhi Technological University, Delhi, 110042, India.
| |
Collapse
|
3
|
Jalali Z, Nejad Ebrahimi S, Rezadoost H. Identifying natural products for gastric cancer treatment through pharmacophore creation, 3D QSAR, virtual screening, and molecular dynamics studies. Daru 2023; 31:243-258. [PMID: 37733194 PMCID: PMC10624797 DOI: 10.1007/s40199-023-00480-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) is known as the fourth leading cause of cancer-related death and the fifth major cancer in the world, and this is a serious threat to general health all over the world. The lack of early detection markers results in a belated diagnosis, i.e. the final stages, which could be associated with the ineffectiveness of the treatment strategies, and naturally, it leads to poor prognosis. Even though a variety of treatments have been developed, there is a trend of studying traditional medicinal plants, due to the worrying side effect of drugs available in the market. METHODS In this study, pharmacophore generation and 3D-QSAR model were created using 50 compounds with anti-gastric cancer activity (with IC50 had been reported in the previous studies). RESULTS Based on three of the best pharmacophoric hypotheses, virtual screening was performed to discover the top anti-gastric cancer compounds from a database of 183,885 compounds. The selected compounds were used for molecular docking with three protein receptors 7BKG, 4F5B, and 4ZT1 to investigate the intermolecular interactions between these ligands and receptors. Finally, 21 lead compounds with the highest amount of docking score ranging from - 13.366 to -6.404 kcal/mol were selected, and then the ADME/Tox properties of these compounds were calculated. All these compounds have a fitness score above 1.8, a molecular weight of less than 500 g/mol, hydrogen bond donors up to 3, hydrogen bond acceptors up to 8.50, and logP of 1.013 to 4.174. Finally, molecular dynamic simulations for top-scoring ligand-receptor complexes were investigated. CONCLUSION These selected lead compounds have the most anti-gastric cancer effects among the 183,885 compounds in the database. Therefore, lead compounds might be considered for gastric cancer therapy in future studies.
Collapse
Affiliation(s)
- Zeinab Jalali
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran
| | - Samad Nejad Ebrahimi
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran.
| | - Hassan Rezadoost
- Department of Phytochemistry, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Evin, 1983963113, Tehran, Iran
| |
Collapse
|
4
|
Chen D, Luo C. Salidroside inhibits chronic myeloid leukemia cell proliferation and induces apoptosis by regulating the miR-140-5p/wnt5a/β-catenin axis. Exp Ther Med 2021; 22:1249. [PMID: 34539845 PMCID: PMC8438695 DOI: 10.3892/etm.2021.10684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 02/18/2021] [Indexed: 12/29/2022] Open
Abstract
Salidroside, an active ingredient of Rhodiola rosea, exhibits antitumor effects in various types of cancer. However, the role of salidroside in chronic myeloid leukemia (CML) has not been elucidated. In the presents study, cell viability was assessed by CCK-8 assay, while apoptosis was detected by flow cytometry. Reverse transcription-quantitative PCR analysis was used to examine the expression levels of miR-140-5p in human CML cell lines. The expression levels of apoptosis and cell cycle-associated proteins and of the wnt5a/β-catenin signaling pathway were determined by western blot analysis. Bioinformatic analysis and luciferase reporter assays were employed to investigate the association between miR-140-5p and wnt5a. The results revealed that exposure of CML cells to salidroside (80 µM) inhibited cell proliferation and promoted apoptosis. In addition, salidroside treatment led to the upregulation of miR-140-5p expression. Furthermore, the inhibition of wnt5a/β-catenin signaling pathway and the pro-apoptotic effects induced by salidroside were attenuated by miR-140-5p silencing. Notably, wnt5a was revealed to be a direct target of miR-140-5p. The present findings indicated that salidroside exerted anti-CML effects through regulating miR-140-5p by suppressing the wnt5a/β-catenin signaling pathway. The present study provided evidence of the therapeutic role of salidroside in CML.
Collapse
Affiliation(s)
- Danjun Chen
- Department of Pharmacy, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| | - Cong Luo
- Department of Hematology, The First Affiliated Hospital of University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
5
|
Prevention of High Glucose-Mediated EMT by Inhibition of Hsp70 Chaperone. Int J Mol Sci 2021; 22:ijms22136902. [PMID: 34199046 PMCID: PMC8268552 DOI: 10.3390/ijms22136902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/11/2021] [Accepted: 06/24/2021] [Indexed: 12/29/2022] Open
Abstract
Hyperglycemia may contribute to the progression of carcinomas by triggering epithelial-to-mesenchymal transition (EMT). Some proteostasis systems are involved in metastasis; in this paper, we sought to explore the mechanism of Hsp70 chaperone in EMT. We showed that knockdown of Hsp70 reduced cell migration capacity concomitantly with levels of mRNA of the Slug, Snail, and Twist markers of EMT, in colon cancer cells incubated in high glucose medium. Conversely, treatment of cells with Hsp70 inducer U-133 were found to elevate cell motility, along with the other EMT markers. To prove that inhibiting Hsp70 may reduce EMT efficiency, we treated cells with a CL-43 inhibitor of the HSF1 transcription factor, which lowered Hsp70 and HSF1 content in the control and induced EMT in carcinoma cells. Importantly, CL-43 reduced migration capacity, EMT-linked transcription factors, and increased content of epithelial marker E-cadherin in colon cancer cells of three lines, including one derived from a clinical sample. To prove that Hsp70 chaperone should be targeted when inhibiting the EMT pathway, we treated cancer cells with 2-phenylethynesulfonamide (PES) and demonstrated that the compound inhibited substrate-binding capacity of Hsp70. Furthermore, PES suppressed EMT features, cell motility, and expression of specific transcription factors. In conclusion, the Hsp70 chaperone machine efficiently protects mechanisms of the EMT, and the safe inhibitors of the chaperone are needed to hamper metastasis at its initial stage.
Collapse
|
6
|
Niu YN, Zeng Y, Zhong FF, Long SL, Ren DW, Qin X, Liu WJ. Salidroside overcomes dexamethasone resistance in T-acute lymphoblastic leukemia cells. Exp Ther Med 2021; 21:636. [PMID: 33968167 PMCID: PMC8097222 DOI: 10.3892/etm.2021.10068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 03/19/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of the present study was to analyze whether the use of salidroside (SAL) could overcome dexamethasone (DEX) resistance in T-acute lymphocytic leukemia cells. The human T-ALL DEX-resistant cell line, CEM-C1 and the DEX-sensitive cell line, CEM-C7 were used in the current study. The proliferation inhibition rates in these cells, treated with SAL and DEX alone, and in combination were detected using a Cell Counting Kit-8 assay, while the morphological changes of the cells were observed using an inverted microscope. Reverse transcription-quantitative PCR was used to detect the mRNA expression levels of the c-Myc and LC3 genes, while flow cytometry was used to detect the cell cycle distribution and the rate of apoptosis. In addition, western blot analysis was used to detect the protein expression levels of c-Myc, BCL-2, Bax, cleaved PARP and LC3. and acridine orange staining was used to detect the changes in acidic autophagy vesicles. It was found that SAL could effectively inhibit cell proliferation and induce apoptosis in the CEM-C1 and CEM-C7 cells. In addition, SAL promoted the induction of autophagy. The protein expression levels of c-Myc in the CEM-C1 cells were significantly higher compared with that in the CEM-C7 cells. SAL downregulated the mRNA expression levels of the c-Myc gene and protein in a dose-dependent manner. This suggested that SAL could inhibit the proliferation of the CEM-C1 and CEM-C7 cells, induce apoptosis and autophagy and overcome DEX resistance in the CEM-C1 cells. The mechanism may be associated with the downregulation of c-Myc.
Collapse
Affiliation(s)
- Ya-Na Niu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Yan Zeng
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Fang-Fang Zhong
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Si-Li Long
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Dan-Wei Ren
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Xiang Qin
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| | - Wen-Jun Liu
- Department of Pediatric Hematology, The Affiliated Hospital of Southwest Medical University and Birth Defects Clinical Medical Research Center of Sichuan Province, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
7
|
Wang S, Ge F, Cai T, Qi S, Qi Z. [Dihydromyricetin inhibits proliferation and migration of gastric cancer cells through regulating Akt/STAT3 signaling pathways and HMGB1 expression]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:87-92. [PMID: 33509758 DOI: 10.12122/j.issn.1673-4254.2021.01.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE To investigate the inhibitory effects of dihydromyricetin on the proliferation and migration of gastric cancer BGC-823 cells and explore the molecular mechanisms. METHODS BGC-823 cells in routine culture were treated with different concentrations of dihydromyricetin (0, 40, 60, 80, 100, and 120 μg/mL) for 24 h, and the changes in cell viability were detected using CCK-8 assay; colony forming assay and Transwell assay were performed to assess the changes in colonyforming and migration abilities of the cells, respectively. The levels of MMP-2 and MMP-9 in the treated cells were determined using ELISA, and Western blotting was used to detect the expressions of E-cadherin, N-cadherin, cyclin D1, cyclin E1, HSP70 and HMGB1 and the phosphorylation levels of Akt and Stat3. RESULTS CCK-8 assay showed that dihydromyricetin treatment dose-dependently inhibited the viability of BGC-823 cells (P < 0.05). Treatment with dihydromyricetin obviously suppressed the proliferation and migration of BGC-823 cells, significantly reduced the expression levels of cyclin D1, cyclin E1 and Ncadherin, enhanced E-cadherin expression, inhibited the phosphorylation of Akt and stat3, and downregulated HMGB1 expression in the cells. The results of ELISA demonstrated significantly lowered levels of MMP-2 and MMP-9 in dihydromyricetin-treated cells. CONCLUSIONS Dihydromyricetin inhibits the proliferation and migration of BGC-823 cells through suppressing the activation of Akt/stat3 signaling pathways and HMGB1 expression.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| | - Fei Ge
- School of Pharmacy, Wannan Medical College, Wuhu 241002, China
| | - Tianyu Cai
- Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China.,School of Clinical Medicine, Wannan Medical College, Wuhu 241002, China
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu 241002, China.,Anhui Provincial Key Laboratory of Active Biological Macro-molecules, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
8
|
Tang T, Wang S, Cai T, Cheng Z, Meng Y, Qi S, Zhang Y, Qi Z. High mobility group box 1 regulates gastric cancer cell proliferation and migration via RAGE-mTOR/ERK feedback loop. J Cancer 2021; 12:518-529. [PMID: 33391448 PMCID: PMC7739007 DOI: 10.7150/jca.51049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is a common malignancy tumour in China. Despite various therapeutic approaches to improve the survival rate of GC patients, the effectiveness of currently available treatments remains unsatisfactory. High mobility group box 1 (HMGB1) is reported to play a role in tumour development. However, the molecular mechanisms involved in HMGB1-mediated regulation of proliferation and migration of GC cells remain unclear. In the present study, we demonstrated that HMGB1 is highly expressed in GC cells and tissue. In HGC-27 GC cells, HMGB1 overexpression or HMGB1 RNA interference both demonstrated that HMGB1 could promote GC cell proliferation and migration. Investigation of the underlying molecular mechanisms revealed that HMGB1 enhanced cyclins expression, induced epithelial-to-mesenchymal transition and matrix metalloproteinase (MMPs) expression and promoted RAGE expression as well as RAGE-mediated activation of Akt/mTOR/P70S6K and ERK/P90RSK/CREB signalling pathways. We also found that inhibition of ERK and mTOR using specific inhibitors reduced recombinant human HMGB1-induced RAGE expression, suggesting that the RAGE-mTOR/ERK positive feedback loop is involved in HMGB1-induced GC cell proliferation and migration. Our study highlights a novel mechanism by which HMGB1 promotes GC cell proliferation and migration via RAGE-mediated Akt-mTOR and ERK-CREB signalling pathways which also involves the RAGE-mTOR/ERK feedback loop. These findings indicate that HMGB1 is a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Tuo Tang
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Shengnan Wang
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Tianyu Cai
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Zhenyu Cheng
- School of Clinical Medicine, Wannan Medical College, Wuhu, Anhui 241002, P.R. China
| | - Yu Meng
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Shimei Qi
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Yao Zhang
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| | - Zhilin Qi
- Department of Biochemistry and Molecular Biology.,Anhui Province Key Laboratory of Active Biological Macro-molecules
| |
Collapse
|
9
|
Kozak J, Forma A, Czeczelewski M, Kozyra P, Sitarz E, Radzikowska-Büchner E, Sitarz M, Baj J. Inhibition or Reversal of the Epithelial-Mesenchymal Transition in Gastric Cancer: Pharmacological Approaches. Int J Mol Sci 2020; 22:ijms22010277. [PMID: 33383973 PMCID: PMC7795012 DOI: 10.3390/ijms22010277] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/12/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) constitutes one of the hallmarks of carcinogenesis consisting in the re-differentiation of the epithelial cells into mesenchymal ones changing the cellular phenotype into a malignant one. EMT has been shown to play a role in the malignant transformation and while occurring in the tumor microenvironment, it significantly affects the aggressiveness of gastric cancer, among others. Importantly, after EMT occurs, gastric cancer patients are more susceptible to the induction of resistance to various therapeutic agents, worsening the clinical outcome of patients. Therefore, there is an urgent need to search for the newest pharmacological agents targeting EMT to prevent further progression of gastric carcinogenesis and potential metastases. Therapies targeted at EMT might be combined with other currently available treatment modalities, which seems to be an effective strategy to treat gastric cancer patients. In this review, we have summarized recent advances in gastric cancer treatment in terms of targeting EMT specifically, such as the administration of polyphenols, resveratrol, tangeretin, luteolin, genistein, proton pump inhibitors, terpenes, other plant extracts, or inorganic compounds.
Collapse
Affiliation(s)
- Joanna Kozak
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Alicja Forma
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Marcin Czeczelewski
- Department of Forensic Medicine, Medical University of Lublin, 20-090 Lublin, Poland; (A.F.); (M.C.)
| | - Paweł Kozyra
- Student Research Group, Independent Radiopharmacy Unit, Faculty of Pharmacy, Medical University of Lublin, PL-20093 Lublin, Poland;
| | - Elżbieta Sitarz
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, Gluska Street 1, 20-439 Lublin, Poland;
| | - Elżbieta Radzikowska-Büchner
- Department of Plastic Surgery, Central Clinical Hospital of the Ministry of the Interior in Warsaw, 01-211 Warsaw, Poland;
| | - Monika Sitarz
- Department of Conservative Dentistry with Endodontics, Medical University of Lublin, 20-090 Lublin, Poland;
| | - Jacek Baj
- Department of Human Anatomy, Medical University of Lublin, 20-090 Lublin, Poland;
- Correspondence:
| |
Collapse
|
10
|
Wang N, Song J, Zhou G, Li W, Ma H. Mechanism of salidroside relieving the acute hypoxia-induced myocardial injury through the PI3K/Akt pathway. Saudi J Biol Sci 2020; 27:1533-1537. [PMID: 32489291 PMCID: PMC7254047 DOI: 10.1016/j.sjbs.2020.04.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/01/2023] Open
Abstract
OBJECTIVE The objective was to investigate the anti-inflammatory effects of salidroside through the PI3K/Akt signaling pathway and its protective effects on acute hypoxia-induced myocardial injury in rats. METHODS A total of 24 healthy Sprague-Dawley male rats were selected as the experimental subjects. All rats were divided into 4 groups by using the random number table method, with 6 rats in each group. The groups included the normal control group, the salidroside group, the hypobaric hypoxia group, and the hypobaric hypoxia + salidroside group. Rats in the salidroside group were fed in the original animal laboratory and were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg. Rats in the normal control group were intragastrically administered with an equal dosage of saline. Rats in the hypobaric hypoxia + salidroside group were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg, who were fed in the hypoxic experiment module for animals. The altitude was increased to 4000 m, and the rats were kept in the module for 24 h. Rats in the hypobaric hypoxia group were intragastrically administered with an equal dosage of saline in the same environment, and the altitude was increased to 4000 m after administration. Parameters of blood gas analysis, histopathological changes in cardiac tissues, cardiac indexes, and inflammatory factors IL-6 and TNF-α levels of rats in groups were compared. RESULTS 1. The cardiac indexes of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were statistically significant (P < 0.05). 2. The results of blood gas analysis of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were significantly different (P < 0.05). 3. In the hypobaric hypoxia group, the myocardial cells of rats were arranged disorderly and shaped differently, with cases such as edema, degeneration, necrosis, nucleus pyknosis, and massive infiltration of inflammatory cells. In the hypobaric hypoxia + salidroside group, the above-mentioned pathological changes in myocardial cells were relieved. 4. Compared with the hypobaric hypoxia group, in the hypobaric hypoxia + salidroside group, the concentrations of IL-6 and TNF-α in rats decreased apparently, and the differences were statistically significant (P < 0.05). CONCLUSION Salidroside had the repairing and protective effects on the hypobaric hypoxia-induced myocardial injuries in rats. The application of salidroside could reduce the inflammatory responses of rats with hypobaric hypoxia-induced myocardial injuries through PI3K/Akt signaling pathway, thereby protecting the myocardial cells.
Collapse
Affiliation(s)
- Nan Wang
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou City 730000, Gansu Province, China
| | - Jiyang Song
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou City 730000, Gansu Province, China
| | - Gang Zhou
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou City 730000, Gansu Province, China
| | - Wenli Li
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou City 730000, Gansu Province, China
| | - Huiyuan Ma
- Department of Cardiology, Gansu Provincial Hospital, Lanzhou City 730000, Gansu Province, China
| |
Collapse
|
11
|
Huang L, Huang Z, Lin W, Wang L, Zhu X, Chen X, Yang S, Lv C. Salidroside suppresses the growth and invasion of human osteosarcoma cell lines MG63 and U2OS in vitro by inhibiting the JAK2/STAT3 signaling pathway. Int J Oncol 2019; 54:1969-1980. [PMID: 31081055 PMCID: PMC6521935 DOI: 10.3892/ijo.2019.4781] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/14/2019] [Indexed: 12/21/2022] Open
Abstract
Previous research has reported that salidroside exerts antitumor properties on numerous types of tumor cells; however, its effect on osteosarcoma cells remains unknown. The present study aimed to investigate the effects of salidroside on the viability, apoptosis and invasion of osteosarcoma cells in vitro, and determine the underlying mechanism of action. The results of an MTT revealed that salidroside suppressed the viability of osteosarcoma cells (MG63 and U2OS cells) in a time- and concentration-dependent manner. The results of cell morphological analysis (profile observations and Hoechst 33258 staining) and the detection of apoptosis by flow cytometry further indicated that the decrease in osteosarcoma cell viability induced by salidroside was associated with cell apoptosis. Western blot analysis not only confirmed these results but also suggested that salidroside induced the apoptosis of osteosarcoma cells by activating the caspase-9-dependent apoptotic pathway. In addition, we reported that salidroside induced G0/G1 phase arrest and suppressed the invasion of osteosarcoma cells, as measured by flow cytometric cell cycle analysis and a Transwell invasion assay, respectively. Western blot analysis confirmed the aforementioned results. Furthermore, our findings demonstrated that salidroside induced the apoptosis, G0/G1 phase arrest and suppressed the invasion of osteosarcoma cells by inhibiting the janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway, as determined by western blot analysis. In summary, the findings of the present study suggested that salidroside may inhibit the progression of osteosarcoma by suppressing the growth and invasion of osteosarcoma cells. Furthermore, the investigations into the underlying mechanism demonstrated that salidroside exerted notable antitumor activity in osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Lintuo Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|