1
|
Edwards R, Eaglesfield R, Tokatlidis K. The mitochondrial intermembrane space: the most constricted mitochondrial sub-compartment with the largest variety of protein import pathways. Open Biol 2021; 11:210002. [PMID: 33715390 PMCID: PMC8061763 DOI: 10.1098/rsob.210002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The mitochondrial intermembrane space (IMS) is the most constricted sub-mitochondrial compartment, housing only about 5% of the mitochondrial proteome, and yet is endowed with the largest variability of protein import mechanisms. In this review, we summarize our current knowledge of the major IMS import pathway based on the oxidative protein folding pathway and discuss the stunning variability of other IMS protein import pathways. As IMS-localized proteins only have to cross the outer mitochondrial membrane, they do not require energy sources like ATP hydrolysis in the mitochondrial matrix or the inner membrane electrochemical potential which are critical for import into the matrix or insertion into the inner membrane. We also explore several atypical IMS import pathways that are still not very well understood and are guided by poorly defined or completely unknown targeting peptides. Importantly, many of the IMS proteins are linked to several human diseases, and it is therefore crucial to understand how they reach their normal site of function in the IMS. In the final part of this review, we discuss current understanding of how such IMS protein underpin a large spectrum of human disorders.
Collapse
Affiliation(s)
- Ruairidh Edwards
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Ross Eaglesfield
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| | - Kostas Tokatlidis
- Institute of Molecular Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
2
|
Zhou W, Ma D, Sun AX, Tran HD, Ma DL, Singh BK, Zhou J, Zhang J, Wang D, Zhao Y, Yen PM, Goh E, Tan EK. PD-linked CHCHD2 mutations impair CHCHD10 and MICOS complex leading to mitochondria dysfunction. Hum Mol Genet 2019; 28:1100-1116. [PMID: 30496485 PMCID: PMC6423417 DOI: 10.1093/hmg/ddy413] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Revised: 10/31/2018] [Accepted: 11/22/2018] [Indexed: 12/13/2022] Open
Abstract
Coiled-coil-helix-coiled-coil-helix domain containing protein 2 (CHCHD2) mutations were linked with autosomal dominant Parkinson's disease (PD) and recently, Alzheimer's disease/frontotemporal dementia. In the current study, we generated isogenic human embryonic stem cell (hESC) lines harboring PD-associated CHCHD2 mutation R145Q or Q126X via clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) method, aiming to unravel pathophysiologic mechanism and seek potential intervention strategy against CHCHD2 mutant-caused defects. By engaging super-resolution microscopy, we identified a physical proximity and similar distribution pattern of CHCHD2 along mitochondria with mitochondrial contact site and cristae organizing system (MICOS), a large protein complex maintaining mitochondria cristae. Isogenic hESCs and differentiated neural progenitor cells (NPCs) harboring CHCHD2 R145Q or Q126X mutation showed impaired mitochondria function, reduced CHCHD2 and MICOS components and exhibited nearly hollow mitochondria with reduced cristae. Furthermore, PD-linked CHCHD2 mutations lost their interaction with coiled-coil-helix-coiled-coil-helix domain containing protein 10 (CHCHD10), while transient knockdown of either CHCHD2 or CHCHD10 reduced MICOS and mitochondria cristae. Importantly, a specific mitochondria-targeted peptide, Elamipretide/MTP-131, now tested in phase 3 clinical trials for mitochondrial diseases, was found to enhance CHCHD2 with MICOS and mitochondria oxidative phosphorylation enzymes in isogenic NPCs harboring heterozygous R145Q, suggesting that Elamipretide is able to attenuate CHCHD2 R145Q-induced mitochondria dysfunction. Taken together, our results suggested CHCHD2-CHCHD10 complex may be a novel therapeutic target for PD and related neurodegenerative disorders, and Elamipretide may benefit CHCHD2 mutation-linked PD.
Collapse
Affiliation(s)
- Wei Zhou
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore
| | - Dongrui Ma
- Department of Neurology, Singapore General Hospital, Singapore
| | - Alfred Xuyang Sun
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore.,Stem Cell and Regenerative Biology Laboratory, Genome Institute of Singapore, Singapore
| | - Hoang-Dai Tran
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore.,Stem Cell and Regenerative Biology Laboratory, Genome Institute of Singapore, Singapore
| | - Dong-Liang Ma
- Neuroregeneration Laboratory, Singhealth Duke-NUS Neuroscience Academic Clinical Program, Singapore
| | - Brijesh K Singh
- Programs in Metabolic and Cardiovascular Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Jin Zhou
- Programs in Metabolic and Cardiovascular Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Jinyan Zhang
- Department of Neurology, Singapore General Hospital, Singapore
| | - Danlei Wang
- Stem Cell and Regenerative Biology Laboratory, Genome Institute of Singapore, Singapore
| | - Yi Zhao
- Department of Clinical Research, Singapore General Hospital, Singapore
| | - Paul M Yen
- Programs in Metabolic and Cardiovascular Disorders, Duke-NUS Graduate Medical School, Singapore
| | - Eyleen Goh
- Neuroregeneration Laboratory, Singhealth Duke-NUS Neuroscience Academic Clinical Program, Singapore.,Neuroregeneration Laboratory, National Neuroscience Institute, Singapore
| | - Eng-King Tan
- Neuroscience Research Laboratory, National Neuroscience Institute, Singapore.,Department of Neurology, Singapore General Hospital, Singapore
| |
Collapse
|
3
|
Imai Y, Meng H, Shiba-Fukushima K, Hattori N. Twin CHCH Proteins, CHCHD2, and CHCHD10: Key Molecules of Parkinson's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2019; 20:ijms20040908. [PMID: 30791515 PMCID: PMC6412816 DOI: 10.3390/ijms20040908] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 12/12/2022] Open
Abstract
Mutations of coiled-coil-helix-coiled-coil-helix domain containing 2 (CHCHD2) and 10 (CHCHD10) have been found to be linked to Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and/or frontotemporal lobe dementia (FTD). CHCHD2 and CHCHD10 proteins, which are homologous proteins with 54% identity in amino acid sequence, belong to the mitochondrial coiled-coil-helix-coiled-coil-helix (CHCH) domain protein family. A series of studies reveals that these twin proteins form a multimodal complex, producing a variety of pathophysiology by the disease-causing variants of these proteins. In this review, we summarize the present knowledge about the physiological and pathological roles of twin proteins, CHCHD2 and CHCHD10, in neurodegenerative diseases.
Collapse
Affiliation(s)
- Yuzuru Imai
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Hongrui Meng
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Kahori Shiba-Fukushima
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| | - Nobutaka Hattori
- Department of Research for Parkinson's Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
- Department of Neurodegenerative and Demented Disorders, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan.
| |
Collapse
|