1
|
Bozgeyik E, Elek A, Gocer Z, Bozgeyik I. The fate and function of non-coding RNAs during necroptosis. Epigenomics 2024; 16:901-915. [PMID: 38884366 PMCID: PMC11370912 DOI: 10.1080/17501911.2024.2354653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 05/07/2024] [Indexed: 06/18/2024] Open
Abstract
Necroptosis is a novel form of cell death which is activated when apoptotic cell death signals are disrupted. Accumulating body of observations suggests that noncoding RNAs, which are the lately discovered mystery of the human genome, are significantly associated with necroptotic signaling circuitry. The fate and function of miRNAs have been well documented in human disease, especially cancer. Recently, lncRNAs have gained much attention due to their diverse regulatory functions. Although available studies are currently based on bioinformatic analysis, predicted interactions desires further attention, as these hold significant promise and should not be overlooked. In the light of these, here we comprehensively review and discuss noncoding RNA molecules that play significant roles during execution of necroptotic cell death.
Collapse
Affiliation(s)
- Esra Bozgeyik
- Department of Medical Services & Techniques, Vocational School of Health Services, Adiyaman University, Adiyaman, Turkey
| | - Alperen Elek
- Faculty of Medicine, Ege University, Izmir, Turkey
| | - Zekihan Gocer
- Faculty of Medicine, Gaziantep University, Gaziantep, Turkey
| | - Ibrahim Bozgeyik
- Department of Medical Biology, Faculty of Medicine, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
2
|
Yu X, Yuan J, Shi L, Dai S, Yue L, Yan M. Necroptosis in bacterial infections. Front Immunol 2024; 15:1394857. [PMID: 38933265 PMCID: PMC11199740 DOI: 10.3389/fimmu.2024.1394857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Necroptosis, a recently discovered form of cell-programmed death that is distinct from apoptosis, has been confirmed to play a significant role in the pathogenesis of bacterial infections in various animal models. Necroptosis is advantageous to the host, but in some cases, it can be detrimental. To understand the impact of necroptosis on the pathogenesis of bacterial infections, we described the roles and molecular mechanisms of necroptosis caused by different bacterial infections in this review.
Collapse
Affiliation(s)
- Xing Yu
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Jin Yuan
- Clinical Laboratory, Puer Hospital of Traditional Chinese Medicine, Puer, China
| | - Linxi Shi
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Shuying Dai
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| | - Lei Yue
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Min Yan
- Department of Pathogen Biology and Immunology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, China
| |
Collapse
|
3
|
Abdul Manap AS, Wisham AA, Wong FW, Ahmad Najmi HR, Ng ZF, Diba RS. Mapping the function of MicroRNAs as a critical regulator of tumor-immune cell communication in breast cancer and potential treatment strategies. Front Cell Dev Biol 2024; 12:1390704. [PMID: 38726321 PMCID: PMC11079208 DOI: 10.3389/fcell.2024.1390704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Among women, breast cancer ranks as the most prevalent form of cancer, and the presence of metastases significantly reduces prognosis and diminishes overall survival rates. Gaining insights into the biological mechanisms governing the conversion of cancer cells, their subsequent spread to other areas of the body, and the immune system's monitoring of tumor growth will contribute to the advancement of more efficient and targeted therapies. MicroRNAs (miRNAs) play a critical role in the interaction between tumor cells and immune cells, facilitating tumor cells' evasion of the immune system and promoting cancer progression. Additionally, miRNAs also influence metastasis formation, including the establishment of metastatic sites and the transformation of tumor cells into migratory phenotypes. Specifically, dysregulated expression of these genes has been associated with abnormal expression of oncogenes and tumor suppressor genes, thereby facilitating tumor development. This study aims to provide a concise overview of the significance and function of miRNAs in breast cancer, focusing on their involvement as tumor suppressors in the antitumor immune response and as oncogenes in metastasis formation. Furthermore, miRNAs hold tremendous potential as targets for gene therapy due to their ability to modulate specific pathways that can either promote or suppress carcinogenesis. This perspective highlights the latest strategies developed for miRNA-based therapies.
Collapse
Affiliation(s)
- Aimi Syamima Abdul Manap
- Department of Biomedical Science, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | | | - Fei Wen Wong
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | | - Zhi Fei Ng
- Faculty of Biosciences, MAHSA University, Kuala Langat, Selangor, Malaysia
| | | |
Collapse
|
4
|
Shao H, Wu W, Wang P, Han T, Zhuang C. Role of Necroptosis in Central Nervous System Diseases. ACS Chem Neurosci 2022; 13:3213-3229. [PMID: 36373337 DOI: 10.1021/acschemneuro.2c00405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Necroptosis is a type of precisely regulated necrotic cell death activated in caspase-deficient conditions. Multiple factors initiate the necroptotic signaling pathway, including toll-like receptor 3/4, tumor necrosis factor (TNF), dsRNA viruses, and T cell receptors. Presently, TNF-induced necroptosis via the phosphorylation of three key proteins, receptor-interacting protein kinase 1, receptor-interacting protein kinase 3, and mixed lineage kinase domain-like protein, is the best-characterized process. Necroptosis induced by Z-DNA-binding protein 1 (ZBP-1) and toll/interleukin-1 receptor (TIR)-domain-containing adapter-inducing interferon (TRIF) plays a significant role in infectious diseases, such as influenza A virus, Zika virus, and herpesvirus infection. An increasing number of studies have demonstrated the close association of necroptosis with multiple diseases, and disrupting necroptosis has been confirmed to be effective for treating (or managing) these diseases. The central nervous system (CNS) exhibits unique physiological structures and immune characteristics. Necroptosis may occur without the sequential activation of signal proteins, and the necroptosis of supporting cells has more important implications in disease development. Additionally, necroptotic signals can be activated in the absence of necroptosis. Here, we summarize the role of necroptosis and its signal proteins in CNS diseases and characterize typical necroptosis regulators to provide a basis for the further development of therapeutic strategies for treating such diseases. In the present review, relevant information has been consolidated from recent studies (from 2010 until the present), excluding the patents in this field.
Collapse
Affiliation(s)
- Hongming Shao
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wenbin Wu
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Pei Wang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ting Han
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Chunlin Zhuang
- School of Pharmacy, Second Military Medical University, Shanghai 200433, China.,School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
5
|
Zhang X, Chen J, Cheng H, Zhu J, Dong Q, Zhang H, Chen Z. MicroRNA-155 expression with Brucella infection in vitro and in vivo and decreased serum levels of MicroRNA-155 in patients with brucellosis. Sci Rep 2022; 12:4181. [PMID: 35264708 PMCID: PMC8907217 DOI: 10.1038/s41598-022-08180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/03/2022] [Indexed: 11/09/2022] Open
Abstract
Infection with Brucella is characterized by the inhibition of host immune responses. MicroRNA-155 (miR-155) has been implicated in the immune response to many diseases. In this study, its expression during Brucella 16M infection of macrophages and mice was analyzed. Expression of miR-155 was significantly induced in macrophages at 24 h post infection. Further, an analysis of infected mice showed that miR-155 was inhibited at 7 and 14 days but induced at 28 days. Interestingly, this trend in induction or inhibition was reversed at 7 and 14 days in 16M△virB-infected mice. This suggested that decreased expression of miR-155 at an early stage of infection was dependent on intracellular replication. In humans with brucellosis, serum levels of miR-155 were significantly decreased compared to those in individuals without brucellosis and healthy volunteers. Significant correlations were observed between serum level of miR-155 and serum anti-Brucella antibody titers and the sweating symptom. This effect suggests that Brucella interferes with miR-155-regulated immune responses via a unique mechanism. Taken together, data from this study indicate that Brucella infection affects miR-155 expression and that human brucellosis patients show decreased serum levels of miR-155.
Collapse
Affiliation(s)
- Xi Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Jingjing Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Huimin Cheng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.,Animal Husbandry and Veterinary Research Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing, People's Republic of China
| | - Jinying Zhu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Qiao Dong
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, Liaoning Province, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
6
|
Non-Coding RNAs and Reactive Oxygen Species–Symmetric Players of the Pathogenesis Associated with Bacterial and Viral Infections. Symmetry (Basel) 2021. [DOI: 10.3390/sym13071307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Infections can be triggered by a wide range of pathogens. However, there are few strains of bacteria that cause illness, but some are quite life-threatening. Likewise, viral infections are responsible for many human diseases, usually characterized by high contagiousness. Hence, as bacterial and viral infections can both cause similar symptoms, it can be difficult to determine the exact cause of a specific infection, and this limitation is critical. However, recent scientific advances have geared us up with the proper tools required for better diagnoses. Recent discoveries have confirmed the involvement of non-coding RNAs (ncRNAs) in regulating the pathogenesis of certain bacterial or viral infections. Moreover, the presence of reactive oxygen species (ROS) is also known as a common infection trait that can be used to achieve a more complete description of such pathogen-driven conditions. Thus, this opens further research opportunities, allowing scientists to explore infection-associated genetic patterns and develop better diagnosis and treatment methods. Therefore, the aim of this review is to summarize the current knowledge of the implication of ncRNAs and ROS in bacterial and viral infections, with great emphasis on their symmetry but, also, on their main differences.
Collapse
|
7
|
Abstract
Necroptosis is a noncaspase-dependent and precisely regulated mechanism of cell death. Necroptosis is mainly initiated by members of the tumor necrosis factor receptor (TNFR) and Toll-like receptor (TLR) families, interferon, intracellular RNA and DNA sensors and other mediators. Subsequently, the protein kinase RIPK1 (receptor-interacting protein kinase 1) and RIPK3 interact with the receptor protein, which transduces death signals and further recruits and phosphorylates MLKL (mixed lineage kinase domain-like protein). MLKL serves as the initiator of cell death and eventually induces necroptosis. It was found that necroptosis is not only involved in the physiological regulation but also in the occurrence, development and prognosis of some necrotic diseases, especially infectious diseases. Intervention in the necroptosis signaling pathway is helpful for removing pathogens, inhibiting the development of lesions, and promoting the remodeling of tissue. In-depth study of the molecular regulation mechanism of necroptosis and its relationship with the pathogenesis of infectious diseases will help to provide new ideas and directions for research of the pathological mechanisms and clinical prevention of infectious diseases.
Collapse
Affiliation(s)
- Xiaojing Xia
- Post-Doctoral Research Station, Henan Agriculture University, No. 63, Nonye Road, Zhengzhou, 450002, People's Republic of China.,College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.,Postdoctoral Research Base, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, Henan, People's Republic of China
| | - Liancheng Lei
- College of Veterinary Medicine, Jilin University, Changchun, 130062, People's Republic of China
| | - Song Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China.,Postdoctoral Research Base, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, Henan, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, People's Republic of China. .,Postdoctoral Research Base, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, Henan, People's Republic of China.
| | - Gaiping Zhang
- Post-Doctoral Research Station, Henan Agriculture University, No. 63, Nonye Road, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
8
|
Wemyss MA, Pearson JS. Host Cell Death Responses to Non-typhoidal Salmonella Infection. Front Immunol 2019; 10:1758. [PMID: 31402916 PMCID: PMC6676415 DOI: 10.3389/fimmu.2019.01758] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 07/11/2019] [Indexed: 12/20/2022] Open
Abstract
Salmonella enterica subsp. enterica serovar Typhimurium (S. Typhimurium) is a Gram-negative bacterium with a broad host range that causes non-typhoidal salmonellosis in humans. S. Typhimurium infects epithelial cells and macrophages in the small intestine where it replicates in a specialized intracellular niche called the Salmonella-containing vacuole (SCV) and promotes inflammation of the mucosa to induce typically self-limiting gastroenteritis. Virulence and spread of the bacterium is determined in part by the host individual's ability to limit the infection through innate immune responses at the gastrointestinal mucosa, including programmed cell death. S. Typhimurium however, has evolved a myriad of mechanisms to counteract or exploit host responses through the use of Type III Secretion Systems (T3SS), which allow the translocation of virulence (effector) proteins into the host cell for the benefit of optimal bacterial replication and dissemination. T3SS effectors have been found to interact with apoptotic, necroptotic, and pyroptotic cell death cascades, interfering with both efficient clearance of the bacteria and the recruitment of neutrophils or dendritic cells to the area of infection. The interplay of host inflammation, programmed cell death responses, and bacterial defenses in the context of non-typhoidal Salmonella (NTS) infection is a continuing area of interest within the field, and as such has been reviewed here.
Collapse
Affiliation(s)
- Madeleine A Wemyss
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jaclyn S Pearson
- Department of Molecular and Translational Research, Monash University, Clayton, VIC, Australia.,Department of Microbiology, Monash University, Clayton, VIC, Australia
| |
Collapse
|