1
|
Wang Q, Kong X, Guo W, Liu L, Tian Y, Tao X, Lin N, Su X. HSP90 Exacerbates Bone Destruction in Rheumatoid Arthritis by Activating TRAF6/NFATc1 Signaling. Inflammation 2024; 47:363-375. [PMID: 37902841 DOI: 10.1007/s10753-023-01914-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/01/2023]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by a notably high disability rate, primarily attributed to cartilage and bone degradation. The involvement of heat shock protein 90 (HSP90) as a molecular chaperone in the inflammatory response of RA has been established, but its role in bone destruction remains uncertain. In the present study, the expression of HSP90 was augmented in osteoclasts induced by the receptor activator of nuclear factor-κB ligand. Additionaly, it was observed that the outcomes revealed a noteworthy inhibition of osteoclast formation and differentation when triptolide was utilized to hinder the expression of HSP90. Furthermore, the positive influence of HSP90 in osteoclast differentiation was substantiated by overexpressing HSP90 in osteoclast precursor cells. Mechanically, HSP90 significantly activated the TNF receptor-associated factor 6 (TRAF6)/Nuclear factor of activated T cells 1 (NFATc1) signaling axis, accompanied by markedly promoting osteoclast differentiation. This effect was consistently observed in the destructive joint of rats with collagen-induced arthritis, where HSP90 effectively activated osteoclasts and contributed to arthritic bone destruction by activating the TRAF6/NFATc1 signaling. Overall, the findings of this study provide compelling evidence that HSP90 exacerbates bone destruction in RA by promoting osteoclast differentiation through the activation of TRAF6/NFATc1 signaling, and interference with HSP90 may be a promising strategy for the discovery of anti-arthritic bone destruction agents.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, Anhui, China
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Wanyi Guo
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Liling Liu
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Yage Tian
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Xueying Tao
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China
| | - Na Lin
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China, Academy of Chinese Medicine Sciences , Beijing, China.
| |
Collapse
|
2
|
Yang J, Shuai J, Siow L, Lu J, Sun M, An W, Yu M, Wang B, Chen Q. MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment. Bone Res 2024; 12:2. [PMID: 38221522 PMCID: PMC10788347 DOI: 10.1038/s41413-023-00299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/16/2024] Open
Abstract
Reconstruction of irregular oral-maxillofacial bone defects with an inflammatory microenvironment remains a challenge, as chronic local inflammation can largely impair bone healing. Here, we used magnesium silicate nanospheres (MSNs) to load microRNA-146a-5p (miR-146a) to fabricate a nanobiomaterial, MSN+miR-146a, which showed synergistic promoting effects on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). In addition, miR-146a exhibited an anti-inflammatory effect on mouse bone marrow-derived macrophages (BMMs) under lipopolysaccharide (LPS) stimulation by inhibiting the NF-κB pathway via targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), and MSNs could simultaneously promote M2 polarization of BMMs. MiR-146a was also found to inhibit osteoclast formation. Finally, the dual osteogenic-promoting and immunoregulatory effects of MSN+miR-146a were further validated in a stimulated infected mouse mandibular bone defect model via delivery by a photocuring hydrogel. Collectively, the MSN+miR-146a complex revealed good potential in treating inflammatory irregular oral-maxillofacial bone defects.
Collapse
Affiliation(s)
- Jiakang Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Lixuen Siow
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Wenyue An
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Baixiang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
3
|
Jiang C, Lin Y, Shan H, Xia W, Pan C, Wang N, Zhou L, Gao Y, Zhou Z, Yu X. miR-146a Protects against Staphylococcus aureus-Induced Osteomyelitis by Regulating Inflammation and Osteogenesis. ACS Infect Dis 2022; 8:918-927. [PMID: 35410468 DOI: 10.1021/acsinfecdis.1c00459] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Osteomyelitis is a Staphylococcus aureus-caused bone infection. In this study, the effects of miR-146a on osteomyelitis were evaluated. Using the osteoblast cell model and S. aureus-induced osteomyelitis mice model, we monitored the miR-146 expression and explored the effects of miR-146a on cell proliferation of osteoblasts, bone remodeling, osteoclastogenesis, inflammatory cytokine production, and bacterial burden. Upregulated miR-146a was found in mice with S. aureus-induced osteomyelitis. miR-146a attenuated S. aureus-induced cell loss of osteoblasts, rescued the expression of osteogenic markers, altered the bone remodeling, and inhibited inflammatory cytokine production and osteoclastogenesis. miR-146a knockout mice had higher S. aureus burden. In conclusion, miR-146a protects against S. aureus-induced osteomyelitis by regulating inflammation and osteogenesis.
Collapse
Affiliation(s)
- Chaolai Jiang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Yiwei Lin
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Haojie Shan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Wenyang Xia
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Chenhao Pan
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Nan Wang
- Department of Emergency, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Lihui Zhou
- Department of Orthopaedic Surgery, Xiangshan First People’s Hospital, Ningbo 315700, Zhejiang, China
| | - Youshui Gao
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Zubin Zhou
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| | - Xiaowei Yu
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai 200233, China
| |
Collapse
|
4
|
Ji L, Li X, He S, Chen S. Regulation of osteoclast-mediated bone resorption by microRNA. Cell Mol Life Sci 2022; 79:287. [PMID: 35536437 PMCID: PMC11071904 DOI: 10.1007/s00018-022-04298-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/15/2022] [Accepted: 04/08/2022] [Indexed: 02/08/2023]
Abstract
Osteoclast-mediated bone resorption is responsible for bone metabolic diseases, negatively impacting people's health and life. It has been demonstrated that microRNA influences the differentiation of osteoclasts by regulating the signaling pathways during osteoclast-mediated bone resorption. So far, the involved mechanisms have not been fully elucidated. This review introduced the pathways involved in osteoclastogenesis and summarized the related microRNAs binding to their specific targets to mediate the downstream pathways in osteoclast-mediated bone resorption. We also discuss the clinical potential of targeting microRNAs to treat osteoclast-mediated bone resorption as well as the challenges of avoiding potential side effects and producing efficient delivery methods.
Collapse
Affiliation(s)
- Ling Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xinyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Song Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Effects and Mechanism of lncRNA CRNDE on Sepsis-Induced Acute Kidney Injury. Anal Cell Pathol (Amst) 2020; 2020:8576234. [PMID: 32399391 PMCID: PMC7211233 DOI: 10.1155/2020/8576234] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 02/19/2020] [Accepted: 03/14/2020] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the effects of lncRNA CRNDE on sepsis-associated acute kidney injury in the human kidney 2 cell line and explore the potential mechanisms. Methods HK-2 cells were treated with lipopolysaccharides to induce injuries. The expression of CRNDE and miR-146a in HK-2 cells were altered by a transient transfection assay. Cell apoptosis was detected by a flow cytometry assay, and the levels of inflammatory cytokines including TNF-α, IL-6, IL-8, and IL-1β were assessed by ELISA. Furthermore, western blot analysis was performed to detect the expression levels of TLR4/NF-κB pathway-related proteins. And a luciferase reporter gene assay was used to verify if miR-146a was the target of CRNDE. Results LPS treatment increased CRNDE expression in HK-2 cells. CRNDE overexpression enhanced cell injuries in HK-2 cells significantly increasing inflammatory cytokine levels, including TNF-α, IL-6, IL-8, and IL-1β, and cell apoptosis. In addition, CRNDE overexpression further activated the TLR4/NF-κB pathways in HK-2 cells. Inversely, opposite results were observed in the miR-146a mimic treatment group, and the miR-146a inhibitor could reverse the protein expression changes of TLR4/NF-κB in the si-CRNDE and LPS treatment group. Conclusion This study demonstrated that CRNDE overexpression could activate the TLR4/NF-κB signaling pathway by regulating miR-146a, which accelerated LPS-induced inflammation and apoptosis in HK-2 cells.
Collapse
|
6
|
Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. J Oral Biosci 2020; 62:123-130. [PMID: 32081710 DOI: 10.1016/j.job.2020.02.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND Periodontitis is the inflammation of the tooth-supporting structures and is one of the most common diseases of the oral cavity. The outcome of periodontal infections is tooth loss due to a lack of alveolar bone support. Osteoclasts are giant, multi-nucleated, and bone-resorbing cells that are central for many osteolytic diseases, including periodontitis. Receptor activator of nuclear factor-kB ligand (RANKL) is the principal factor involved in osteoclast differentiation, activation, and survival. However, under pathological conditions, a variety of pro-inflammatory cytokines secreted by activated immune cells also contribute to osteoclast differentiation and activity. Lipopolysaccharide (LPS) is a vital component of the outer membrane of the Gram-negative bacteria. It binds to the Toll-like receptors (TLRs) expressed in many cells and elicits an immune response. HIGHLIGHTS The presence of bacterial LPS in the periodontal area stimulates the secretion of RANKL as well as other inflammatory mediators, activating the process of osteoclastogenesis. RANKL, either independently or synergistically with LPS, can regulate osteoclastogenesis, while LPS alone cannot. MicroRNA, IL-22, M1/M2 macrophages, and memory B cells have recently been shown to modulate osteoclastogenesis in periodontal diseases. CONCLUSION In this review, we summarize the mechanism of osteoclastogenesis accompanying periodontal diseases at the cellular level. We discuss a) the effects of LPS/TLR signaling and other cytokines on RANKL-dependent and -independent mechanisms involved in osteoclastogenesis; b) the recently identified role of several endogenous factors such as miRNA, IL-22, M1/M2 macrophages, and memory B cells in regulating osteoclastogenesis during periodontal pathogenesis.
Collapse
|