1
|
Bansal M, Ansari S, Verma M. Role of miRNAs to control the progression of Chronic Myeloid Leukemia by their expression levels. Med Oncol 2024; 41:55. [PMID: 38216843 DOI: 10.1007/s12032-023-02278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 11/30/2023] [Indexed: 01/14/2024]
Abstract
Chronic Myeloid Leukemia (CML) is a myeloproliferative disorder distinguished by a specific genetic anomaly known as a reciprocal translocation between chromosomes 9 and 22. This translocation causes fusion between the BCR and ABL regions. Consequently, BCR::ABL oncoprotein is formed, which plays a significant role in driving CML progression. Imatinib, a tyrosine kinase inhibitor (TKI), became the first line of drugs against CML. However, with continuous treatment, patients developed resistance against it. Indeed, to address this challenge, microRNA-based therapy emerges as a promising approach. miRNAs are 20-25 nucleotides long and hold great significance in various cellular processes, including cell differentiation, proliferation, migration, and apoptosis. In several malignancies, it has been reported that miRNAs might help to promote or prevent tumourigenesis and abnormal expression because they could act as both oncogenes/tumor suppressors. Recently, because of their vital regulatory function in maintaining cell homeostasis, miRNAs might be used to control CML progression and in developing new therapies for TKI-resistant patients. They might also act as potential prognostic, diagnostic, and therapeutic biomarkers based on their expression profiles. Various annotation tools and microarray-based expression profiles can be used to predict dysregulated miRNAs and their target genes. The main purpose of this review is to provide brief insights into the role of dysregulated miRNAs in CML pathogenesis and to emphasize their clinical relevance, such as their significant potential as therapeutics against CML. Utilizing these miRNAs as a therapeutic approach by inhibition or amplification of their activity could unlock new doors for the therapy of CML.
Collapse
MESH Headings
- Humans
- MicroRNAs/genetics
- Fusion Proteins, bcr-abl
- Drug Resistance, Neoplasm/genetics
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Apoptosis
Collapse
Affiliation(s)
- Manvi Bansal
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Sana Ansari
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India
| | - Malkhey Verma
- School of Biotechnology, Banaras Hindu University, Varanasi, 221005, Uttar Pradesh, India.
| |
Collapse
|
2
|
Zhu Y, Gan X, Qin R, Lin Z. Identification of Six Diagnostic Biomarkers for Chronic Lymphocytic Leukemia Based on Machine Learning Algorithms. JOURNAL OF ONCOLOGY 2022; 2022:3652107. [PMID: 36467501 PMCID: PMC9715328 DOI: 10.1155/2022/3652107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/13/2022] [Accepted: 09/30/2022] [Indexed: 09/19/2023]
Abstract
BACKGROUND Chronic lymphocytic leukemia (CLL) is the most common type of leukemia in adults. Thus, novel reliable biomarkers need to be further explored to increase diagnostic, therapeutic, and prognostic effectiveness. METHODS Six datasets containing CLL and control samples were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis, weighted gene coexpression network analysis (WGCNA), and the least absolute shrinkage and selection operator (LASSO) regression were applied to identify potential diagnostic biomarkers for CLL using R software. The diagnostic performance of the hub genes was then measured by the receiver operating characteristic (ROC) curve analysis. Functional analysis was implemented to uncover the underlying mechanisms. Additionally, correlation analysis was performed to assess the relationship between the hub genes and immunity characteristics. RESULTS A total number of 47 differentially expressed genes (DEGs) and 25 candidate hub genes were extracted through differential gene expression analysis and WGCNA, respectively. Based on the 14 overlapped genes between the DEGs and the candidate hub genes, LASSO regression analysis was used, which identified a final number of six hub genes as potential biomarkers for CLL: ABCA6, CCDC88A, PMEPA1, EBF1, FILIP1L, and TEAD2. The ROC curves of the six genes showed reliable predictive ability in the training and validation cohorts, with all area under the curve (AUC) values over 0.80. Functional analysis revealed an abnormal immune status in the CLL patients. A significant correlation was found between the hub genes and the immune-related pathways, indicating a possible tight connection between the hub genes and tumor immunity in CLL. CONCLUSION This study was based on machine learning algorithms, and we identified six genes that could be possible CLL markers, which may be involved in CLL pathogenesis and progression through immune-related signal pathways.
Collapse
Affiliation(s)
- Yidong Zhu
- Department of Traditional Chinese Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xinjin Gan
- Department of Hematology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruoyan Qin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhikang Lin
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
3
|
Ruhela V, Gupta A, Sriram K, Ahuja G, Kaur G, Gupta R. A Unified Computational Framework for a Robust, Reliable, and Reproducible Identification of Novel miRNAs From the RNA Sequencing Data. FRONTIERS IN BIOINFORMATICS 2022; 2:842051. [PMID: 36304305 PMCID: PMC9580950 DOI: 10.3389/fbinf.2022.842051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
In eukaryotic cells, miRNAs regulate a plethora of cellular functionalities ranging from cellular metabolisms, and development to the regulation of biological networks and pathways, both under homeostatic and pathological states like cancer.Despite their immense importance as key regulators of cellular processes, accurate and reliable estimation of miRNAs using Next Generation Sequencing is challenging, largely due to the limited availability of robust computational tools/methods/pipelines. Here, we introduce miRPipe, an end-to-end computational framework for the identification, characterization, and expression estimation of small RNAs, including the known and novel miRNAs and previously annotated pi-RNAs from small-RNA sequencing profiles. Our workflow detects unique novel miRNAs by incorporating the sequence information of seed and non-seed regions, concomitant with clustering analysis. This approach allows reliable and reproducible detection of unique novel miRNAs and functionally same miRNAs (paralogues). We validated the performance of miRPipe with the available state-of-the-art pipelines using both synthetic datasets generated using the newly developed miRSim tool and three cancer datasets (Chronic Lymphocytic Leukemia, Lung cancer, and breast cancer). In the experiment over the synthetic dataset, miRPipe is observed to outperform the existing state-of-the-art pipelines (accuracy: 95.23% and F1-score: 94.17%). Analysis on all the three cancer datasets shows that miRPipe is able to extract more number of known dysregulated miRNAs or piRNAs from the datasets as compared to the existing pipelines.
Collapse
Affiliation(s)
- Vivek Ruhela
- Department of Computational Biology & Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
- *Correspondence: Vivek Ruhela, ; Anubha Gupta, ; Ritu Gupta,
| | - Anubha Gupta
- SBILab, Department of ECE & Centre of Excellence in Healthcare, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
- *Correspondence: Vivek Ruhela, ; Anubha Gupta, ; Ritu Gupta,
| | - K. Sriram
- Department of Computational Biology & Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
| | - Gaurav Ahuja
- Department of Computational Biology & Centre for Computational Biology, Indraprastha Institute of Information Technology-Delhi (IIIT-D), New Delhi, India
| | - Gurvinder Kaur
- Laboratory Oncology Unit, IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Ritu Gupta
- Laboratory Oncology Unit, IRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, India
- *Correspondence: Vivek Ruhela, ; Anubha Gupta, ; Ritu Gupta,
| |
Collapse
|
4
|
Martins JRB, Moraes LN, Cury SS, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama POM. MiR-125a-3p and MiR-320b Differentially Expressed in Patients with Chronic Myeloid Leukemia Treated with Allogeneic Hematopoietic Stem Cell Transplantation and Imatinib Mesylate. Int J Mol Sci 2021; 22:ijms221910216. [PMID: 34638557 PMCID: PMC8508688 DOI: 10.3390/ijms221910216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.
Collapse
Affiliation(s)
- Juliana R. B. Martins
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Leonardo N. Moraes
- Department of Bioprocesses and Biotechnology, School of Agriculture, São Paulo State University (FCA-UNESP), Botucatu 18610-034, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (IBB-UNESP), Botucatu 18618-970, Brazil; (S.S.C.); (R.F.C.)
| | - Juliana Capannacci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (IBB-UNESP), Botucatu 18618-970, Brazil; (S.S.C.); (R.F.C.)
| | - Célia Regina Nogueira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Newton Key Hokama
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Paula O. M. Hokama
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
- Correspondence:
| |
Collapse
|
5
|
Martins JRB, de Moraes LN, Cury SS, Dadalto J, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama PDOM. Comparison of microRNA Expression Profile in Chronic Myeloid Leukemia Patients Newly Diagnosed and Treated by Allogeneic Hematopoietic Stem Cell Transplantation. Front Oncol 2020; 10:1544. [PMID: 33014798 PMCID: PMC7500210 DOI: 10.3389/fonc.2020.01544] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 07/20/2020] [Indexed: 01/07/2023] Open
Abstract
Chronic myeloid leukemia (CML) results from a translocation between chromosomes 9 and 22, which generates the Philadelphia chromosome. This forms BCR/ABL1, an active tyrosine kinase protein that promotes cell growth and replication. Despite great progress in CML treatment in the form of tyrosine kinase inhibitors, allogeneic-hematopoietic stem cell transplantation (allo-HSCT) is currently used as an important treatment alternative for patients resistant to these inhibitors. Studies have shown that unregulated expression of microRNAs, which act as oncogenes or tumor suppressors, is associated with human cancers. This contributes to tumor formation and development by stimulating proliferation, angiogenesis, and invasion. Research has demonstrated the potential of microRNAs as biomarkers for cancer diagnosis, prognosis, and therapeutic targets. In the present study, we compared the circulating microRNA expression profiles of 14 newly diagnosed patients with chronic phase-CML and 14 Philadelphia chromosome-negative patients after allo-HSCT. For each patient, we tested 758 microRNAs by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis. The global expression profile of microRNAs revealed 16 upregulated and 30 downregulated microRNAs. Target genes were analyzed, and key pathways were extracted and compared. Bioinformatics tools were used to analyze data. Among the downregulated miRNA target genes, some genes related to cell proliferation pathways were identified. These results reveal the comprehensive microRNA profile of CML patients and the main pathways related to the target genes of these miRNAs in cytogenetic remission after allo-HSCT. These results provide new resources for exploring stem cell transplantation-based CML treatment strategies.
Collapse
Affiliation(s)
| | | | - Sarah Santiloni Cury
- Department of Structural and Functional Biology, São Paulo State University (UNESP-IBB), Botucatu, Brazil
| | - Juliane Dadalto
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | - Juliana Capannacci
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, São Paulo State University (UNESP-IBB), Botucatu, Brazil
| | - Célia Regina Nogueira
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | - Newton Key Hokama
- Department of Internal Medicine, São Paulo State University (UNESP-FMB), Botucatu, Brazil
| | | |
Collapse
|
6
|
Kooshkaki O, Rezaei Z, Rahmati M, Vahedi P, Derakhshani A, Brunetti O, Baghbanzadeh A, Mansoori B, Silvestris N, Baradaran B. MiR-144: A New Possible Therapeutic Target and Diagnostic/Prognostic Tool in Cancers. Int J Mol Sci 2020; 21:ijms21072578. [PMID: 32276343 PMCID: PMC7177921 DOI: 10.3390/ijms21072578] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and non-coding RNAs that display aberrant expression in the tissue and plasma of cancer patients when tested in comparison to healthy individuals. In past decades, research data proposed that miRNAs could be diagnostic and prognostic biomarkers in cancer patients. It has been confirmed that miRNAs can act either as oncogenes by silencing tumor inhibitors or as tumor suppressors by targeting oncoproteins. MiR-144s are located in the chromosomal region 17q11.2, which is subject to significant damage in many types of cancers. In this review, we assess the involvement of miR-144s in several cancer types by illustrating the possible target genes that are related to each cancer, and we also briefly describe the clinical applications of miR-144s as a diagnostic and prognostic tool in cancers.
Collapse
Affiliation(s)
- Omid Kooshkaki
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Immunology, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Zohre Rezaei
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Department of Biology, University of Sistan and Baluchestan, Zahedan 9816745845, Iran
| | - Meysam Rahmati
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 5166/15731, Iran;
| | - Parviz Vahedi
- Department of Anatomical Sciences, Maragheh University of Medical Sciences, Maragheh 5165665931, Iran;
| | - Afshin Derakhshani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Oronzo Brunetti
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
| | - Behzad Mansoori
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5230 Odense, Denmark;
| | - Nicola Silvestris
- Medical Oncology Unit—IRCCS Istituto Tumori “Giovanni Paolo II” of Bari, 70124 Bari, Italy;
- Department of Biomedical Sciences and Human Oncology DIMO—University of Bari, 70124 Bari, Italy
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 5165665811, Iran; (A.D.); (A.B.)
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 5166614766, Iran
- Correspondence: (N.S.); (B.B.); Tel.: +39-0805555419 (N.S.); +98-413-3371440 (B.B.)
| |
Collapse
|