1
|
Chen JS, Teng YN, Chen CY, Chen JY. A novel STAT3/ NFκB p50 axis regulates stromal-KDM2A to promote M2 macrophage-mediated chemoresistance in breast cancer. Cancer Cell Int 2023; 23:237. [PMID: 37821959 PMCID: PMC10568766 DOI: 10.1186/s12935-023-03088-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/30/2023] [Indexed: 10/13/2023] Open
Abstract
BACKGROUND Lysine Demethylase 2A (KDM2A) plays a crucial role in cancer cell growth, differentiation, metastasis, and the maintenance of cancer stemness. Our previous study found that cancer-secreted IL-6 can upregulate the expression of KDM2A to promote further the transition of cells into cancer-associated fibroblasts (CAFs). However, the molecular mechanism by which breast cancer-secreted IL-6 regulates the expression of KDM2A remains unclear. Therefore, this study aimed to elucidate the underlying molecular mechanism of IL-6 in regulating KDM2A expression in CAFs and KDM2A-mediated paclitaxel resistance in breast cancer. METHODS The ectopic vector expression and biochemical inhibitor were used to analyze the KDM2A expression regulated by HS-578 T conditioned medium or IL-6 in mammary fibroblasts. Immunoprecipitation and chromatin immunoprecipitation assays were conducted to examine the interaction between STAT3 and NFκB p50. M2 macrophage polarization was assessed by analyzing M2 macrophage-specific markers using flow cytometry and RT-PCR. ESTIMATE algorithm was used to analyze the tumor microenvironment-dominant breast cancer samples from the TCGA database. The correlation between stromal KDM2A and CD163 + M2 macrophages was analyzed using the Pearson correlation coefficient. Cell viability was determined using trypan blue exclusion assay. RESULTS IL-6 regulates gene expression via activation and dimerization of STAT3 or collaboration of STAT3 and NFκB. However, STAT3, a downstream transcription factor of the IL-6 signaling pathway, was directly complexed with NFκB p50, not NFκB p65, to upregulate the expression of KDM2A in CAFs. Enrichment analysis of immune cells/stromal cells using TCGA-breast cancer RNA-seq data unveiled a positive correlation between stromal KDM2A and the abundance of M2 macrophages. CXCR2-associated chemokines secreted by KDM2A-expressing CAFs stimulated M2 macrophage polarization, which in turn secreted CCL2 to increase paclitaxel resistance in breast cancer cells by activating CCR2 signaling. CONCLUSION This study revealed the non-canonical molecular mechanism of IL-6 secreted by breast cancer upregulated KDM2A expression in CAFs via a novel STAT3/NFκB p50 axis, which STAT3 complexed with NFκB p50 in NFκB p50 binding motif of KDM2A promoter. KDM2A-expressing CAFs dominantly secreted the CXCR2-associated chemokines to promote M2 macrophage polarization and enhance paclitaxel resistance in breast cancer. These findings underscore the therapeutic potential of targeting the CXCR2 or CCR2 pathway as a novel strategy for paclitaxel-resistant breast cancer.
Collapse
Affiliation(s)
- Jia-Shing Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan
| | - Yu-Ning Teng
- School of Medicine, College of Medicine, I-Shou University, 8 Yida Road, Kaohsiung, 82445, Taiwan ROC
- Department of Pharmacy, E-Da Cancer Hospital, 21 Yida Road, Kaohsiung, 82445, Taiwan ROC
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan ROC
| | - Jing-Yi Chen
- School of Medicine for International Students, College of Medicine, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan.
- Department of Medical Laboratory Science, College of Medical Science and Technology, I-Shou University, No.8, Yida Road, Jiaosu Village, Yanchao District, Kaohsiung, 82425, Taiwan ROC.
| |
Collapse
|
2
|
Young D, Guha C, Sidoli S. The role of histone H3 lysine demethylases in glioblastoma. Cancer Metastasis Rev 2023; 42:445-454. [PMID: 37286866 DOI: 10.1007/s10555-023-10114-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults with an average survival of 15-18 months. Part of its malignancy derives from epigenetic regulation that occurs as the tumor develops and after therapeutic treatment. Specifically, enzymes involved in removing methylations from histone proteins on chromatin, i.e., lysine demethylases (KDMs), have a significant impact on GBM biology and reoccurrence. This knowledge has paved the way to considering KDMs as potential targets for GBM treatment. For example, increases in trimethylation of histone H3 on the lysine 9 residue (H3K9me3) via inhibition of KDM4C and KDM7A has been shown to lead to cell death in Glioblastoma initiating cells. KDM6 has been shown to drive Glioma resistance to receptor tyrosine kinase inhibitors and its inhibition decreases tumor resistance. In addition, increased expression of the histone methyltransferase MLL4 and UTX histone demethylase are associated with prolonged survival in a subset of GBM patients, potentially by regulating histone methylation on the promoter of the mgmt gene. Thus, the complexity of how histone modifiers contribute to glioblastoma pathology and disease progression is yet to be fully understood. To date, most of the current work on histone modifying enzymes in GBM are centered upon histone H3 demethylase enzymes. In this mini-review, we summarize the current knowledge on the role of histone H3 demethylase enzymes in Glioblastoma tumor biology and therapy resistance. The objective of this work is to highlight the current and future potential areas of research for GBM epigenetics therapy.
Collapse
Affiliation(s)
- Dejauwne Young
- Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
- Department of Radiation Oncology, Department of Pathology, Department of Urology, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
| | - Chandan Guha
- Department of Radiation Oncology, Department of Pathology, Department of Urology, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, The Bronx, New York City, NY, 10461, USA.
| |
Collapse
|
3
|
McCornack C, Woodiwiss T, Hardi A, Yano H, Kim AH. The function of histone methylation and acetylation regulators in GBM pathophysiology. Front Oncol 2023; 13:1144184. [PMID: 37205197 PMCID: PMC10185819 DOI: 10.3389/fonc.2023.1144184] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 03/29/2023] [Indexed: 05/21/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal primary brain malignancy and is characterized by a high degree of intra and intertumor cellular heterogeneity, a starkly immunosuppressive tumor microenvironment, and nearly universal recurrence. The application of various genomic approaches has allowed us to understand the core molecular signatures, transcriptional states, and DNA methylation patterns that define GBM. Histone posttranslational modifications (PTMs) have been shown to influence oncogenesis in a variety of malignancies, including other forms of glioma, yet comparatively less effort has been placed on understanding the transcriptional impact and regulation of histone PTMs in the context of GBM. In this review we discuss work that investigates the role of histone acetylating and methylating enzymes in GBM pathogenesis, as well as the effects of targeted inhibition of these enzymes. We then synthesize broader genomic and epigenomic approaches to understand the influence of histone PTMs on chromatin architecture and transcription within GBM and finally, explore the limitations of current research in this field before proposing future directions for this area of research.
Collapse
Affiliation(s)
- Colin McCornack
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, United States
| | - Timothy Woodiwiss
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurosurgery, University of Iowa Carver College of Medicine, Iowa, IA, United States
| | - Angela Hardi
- Bernard Becker Medical Library, Washington University School of Medicine, St. Louis, MO, United States
| | - Hiroko Yano
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, United States
- The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
4
|
Wang N, Ma T, Yu B. Targeting epigenetic regulators to overcome drug resistance in cancers. Signal Transduct Target Ther 2023; 8:69. [PMID: 36797239 PMCID: PMC9935618 DOI: 10.1038/s41392-023-01341-7] [Citation(s) in RCA: 87] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/15/2023] [Accepted: 01/28/2023] [Indexed: 02/18/2023] Open
Abstract
Drug resistance is mainly responsible for cancer recurrence and poor prognosis. Epigenetic regulation is a heritable change in gene expressions independent of nucleotide sequence changes. As the common epigenetic regulation mechanisms, DNA methylation, histone modification, and non-coding RNA regulation have been well studied. Increasing evidence has shown that aberrant epigenetic regulations contribute to tumor resistance. Therefore, targeting epigenetic regulators represents an effective strategy to reverse drug resistance. In this review, we mainly summarize the roles of epigenetic regulation in tumor resistance. In addition, as the essential factors for epigenetic modifications, histone demethylases mediate the histone or genomic DNA modifications. Herein, we comprehensively describe the functions of the histone demethylase family including the lysine-specific demethylase family, the Jumonji C-domain-containing demethylase family, and the histone arginine demethylase family, and fully discuss their regulatory mechanisms related to cancer drug resistance. In addition, therapeutic strategies, including small-molecule inhibitors and small interfering RNA targeting histone demethylases to overcome drug resistance, are also described.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ting Ma
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| | - Bin Yu
- Institute of Drug Discovery & Development, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
5
|
Ming D, Ma J. EphA3 targeted by miR-3666 contributes to melanoma malignancy via activating ERK1/2 and p38 MAPK pathways. Open Med (Wars) 2022; 17:2098-2108. [PMID: 36578556 PMCID: PMC9758965 DOI: 10.1515/med-2022-0597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/18/2022] [Accepted: 10/11/2022] [Indexed: 12/23/2022] Open
Abstract
Melanoma is a rare, fatal type of skin tumor. Although EPH receptor A3 (EphA3) is deregulated in melanoma, its detailed role remained uncharacterized. Using real time quantitative PCR analysis and western blotting, EphA3 was identified to be upregulated in melanoma tissues and cells, while miR-3666 showed an opposite expression trend. Cell counting kit-8, scratch wound, and in vivo assays proved that EphA3 silence inhibited the melanoma cell proliferation and migration and retarded tumor growth in vivo. Furthermore, western blotting results displayed that EphA3 silence resulted in a low expression of p38-MAPK and p-ERK1/2. Mechanically, miR-3666 was proved to target EphA3 3'UTR by the luciferase reporter assay. Furthermore, miR-3666 mimic compromised the driven melanoma cell proliferation and migration by EphA3 overexpression. In addition, induction of ERK1/2 and p38 MAPK pathways offset the positive effect of EphA3 overexpression on melanoma cells. In conclusion, miR-3666 downregulated EphA3 expression and retarded melanoma malignancy via inactivating ERK1/2 and p38 MAPK pathways. Hence, miR-3666/EphA3 axis may represent a druggable target against melanoma progression.
Collapse
Affiliation(s)
- Di Ming
- Dermatological Department, Wuhan Asia General Hospital, Economic and Technological Development Zone, Wuhan 430056, Hubei, China
| | - Jingjing Ma
- Dermatological Department, Wuhan Asia General Hospital, No. 300 Taizihu North Road, Economic and Technological Development Zone, Wuhan 430056, Hubei, China
| |
Collapse
|
6
|
Onyiba CI, Scarlett CJ, Weidenhofer J. The Mechanistic Roles of Sirtuins in Breast and Prostate Cancer. Cancers (Basel) 2022; 14:cancers14205118. [PMID: 36291902 PMCID: PMC9600935 DOI: 10.3390/cancers14205118] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 12/02/2022] Open
Abstract
Simple Summary There are diverse reports of the dual role of sirtuin genes and proteins in breast and prostate cancers. This review discusses the current information on the tumor promotion or suppression roles of SIRT1–7 in breast and prostate cancers. Precisely, we highlight that sirtuins regulate various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of both breast and prostate cancer. We also provide evidence of the direct regulation of sirtuins by miRNAs, highlighting the consequences of this regulation in breast and prostate cancer. Overall, this review reveals the potential value of sirtuins as biomarkers and/or targets for improved treatment of breast and prostate cancers. Abstract Mammalian sirtuins (SIRT1–7) are involved in a myriad of cellular processes, including apoptosis, proliferation, differentiation, epithelial-mesenchymal transition, aging, DNA repair, senescence, viability, survival, and stress response. In this review, we discuss the current information on the mechanistic roles of SIRT1–7 and their downstream effects (tumor promotion or suppression) in cancers of the breast and prostate. Specifically, we highlight the involvement of sirtuins in the regulation of various proteins implicated in proliferation, apoptosis, autophagy, chemoresistance, invasion, migration, and metastasis of breast and prostate cancer. Additionally, we highlight the available information regarding SIRT1–7 regulation by miRNAs, laying much emphasis on the consequences in the progression of breast and prostate cancer.
Collapse
Affiliation(s)
- Cosmos Ifeanyi Onyiba
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Correspondence:
| | - Christopher J. Scarlett
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Judith Weidenhofer
- School of Biomedical Sciences and Pharmacy, College of Health, Medicine and Wellbeing, University of Newcastle, Ourimbah, NSW 2258, Australia
- Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
7
|
Zhong C, Tao B, Li X, Xiang W, Peng L, Peng T, Chen L, Xia X, You J, Yang X. HOXA-AS2 contributes to regulatory T cell proliferation and immune tolerance in glioma through the miR-302a/KDM2A/JAG1 axis. Cell Death Dis 2022; 13:160. [PMID: 35181676 PMCID: PMC8857186 DOI: 10.1038/s41419-021-04471-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been manifested to manipulate diverse biological processes, including tumor-induced immune tolerance. Thus, we aimed in this study to identify the expression pattern of lncRNA homeobox A cluster antisense RNA 2 (HOXA-AS2) in glioma and decipher its role in immune tolerance and glioma progression. We found aberrant upregulation of lncRNA HOXA-AS2, lysine demethylase 2A (KDM2A), and jagged 1 (JAG1) and a downregulation of microRNA-302a (miR-302a) in glioma specimens. Next, RNA immunoprecipitation, chromatin immunoprecipitation, and dual-luciferase reporter gene assay demonstrated that lncRNA HOXA-AS2 upregulated KDM2A expression by preventing miR-302a from binding to its 3′untranslated region. The functional experiments suggested that lncRNA HOXA-AS2 could promote regulatory T (Treg) cell proliferation and immune tolerance, which might be achieved through inhibition of miR-302a and activation of KDM2A/JAG1 axis. These findings were validated in a tumor xenograft mouse model. To conclude, lncRNA HOXA-AS2 facilitates KDM2A/JAG1 expression to promote Treg cell proliferation and immune tolerance in glioma by binding to miR-302a. These findings may aid in the development of novel antitumor targets.
Collapse
Affiliation(s)
- Chuanhong Zhong
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Bei Tao
- Rheumatism Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China
| | - Xianglong Li
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Wei Xiang
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Lilei Peng
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Tangming Peng
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Ligang Chen
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Xiangguo Xia
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China.,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China.,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China.,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China
| | - Jian You
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China. .,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China. .,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China. .,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China.
| | - Xiaobo Yang
- Neurosurgery Department, the Affiliated Hospital of Southwest Medical University, 646000, Luzhou, P. R. China. .,Sichuan Clinical Research Center for Neurosurgery, 646000, Luzhou, P. R. China. .,Academician (Expert) Workstation of Sichuan Province, 646000, Luzhou, P. R. China. .,Laboratory of Neurological Disease and Brain Function, 646000, Luzhou, P. R. China.
| |
Collapse
|
8
|
Li W, Liu J, Ji L, Tang Y, Qin J, Zhao H, Cheng X, Tian M, Jin G, He H. MiR-674-5p Suppresses the Proliferation and Migration of Glioma Cells by Targeting Cul4b. Neurochem Res 2021; 47:679-691. [PMID: 34779995 DOI: 10.1007/s11064-021-03476-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
Glioma multiforme (GBM) is the most common malignant primary brain tumors. Despite the considerable advances in GBM treatment, it is still one of the most lethal forms of brain tumor. New clinical biomarkers and therapeutic targets are immediately required. MicroRNAs (miRNAs) are a class of small, evolutionarily conserved noncoding RNAs and have emerged as the key regulators of many cancers. Here in this study, we showed that miR-674-5p was probably an important regulator of glioma cell growth. After the transfection with miR-674-5p mimic or inhibitor, we found that the expression level of miR-674-5p was negatively related with cell proliferation and migration in C6 cells. Based on the prediction of the target genes of miR-674-5p on the website, we chose Cullin 4B (Cul4b), a gene upregulated in GBM, and proved that it was a target of miR-674-5p. In addition, we explored the role of miR-674-5p in glioma growth in vivo. Taken together, the present study indicated that miR-674-5p suppressed glioma cell proliferation and migration by targeting Cul4b.
Collapse
Affiliation(s)
- Wen Li
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Juan Liu
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Li Ji
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Yi Tang
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Jianbing Qin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Heyan Zhao
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Xiang Cheng
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Meiling Tian
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Guohua Jin
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China. .,Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong, Jiangsu, People's Republic of China. .,Co-Innovation Center of Neuroregeneration, Nantong, Jiangsu, People's Republic of China.
| | - Hui He
- Department of Human Anatomy, Medical School, Nantong University, Nantong, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Huang X, Pan J, Wang G, Huang T, Li C, Wang Y, Li X. UNC5B-AS1 promotes the proliferation, migration and EMT of hepatocellular carcinoma cells via regulating miR-4306/KDM2A axis. Cell Cycle 2021; 20:2114-2124. [PMID: 34612138 DOI: 10.1080/15384101.2021.1962632] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Being one of the most prevalent malignancies, hepatocellular carcinoma (HCC) threatens the health of population all over the world. Numerous researches have confirmed that long noncoding RNAs (lncRNAs) play an important role in tumor progression. Nonetheless, the mechanisms of unc-5 netrin receptor B antisense RNA 1 (UNC5B-AS1) in HCC remain obscure. Thus, this study aims to investigate the regulatory role and mechanism of UNC5B-AS1 in HCC cells. In our research, UNC5B-AS1 was subjected to gene expression analysis by RT-qPCR. Biological functions of UNC5B-AS1 in HCC cells were measured by MTT, colony formation, EdU and transwell assays. The combination between UNC5B-AS1, lysine demethylase 2A (KDM2A) and miR-4306 was validated by mechanism assays. Result showed UNC5B-AS1 was upregulated in HCC tissues and cells, contributing to the development of cancer staging and survival rate of HCC patients. Moreover, UNC5B-AS1 deficiency inhibited the proliferation, migration and epithelial-mesenchymal transition (EMT) of HCC cells. Furthermore, UNC5B-AS1 could interact with miR-4306 in HCC cells. Similarly, KDM2A was proved as the target gene of miR-4306. Finally, miR-4306 downregulation or KDM2A overexpression reversed the prohibitive role of UNC5B-AS1 knockdown in HCC progression. In short, UNC5B-AS1 accelerates the proliferation, migration and EMT of HCC cells via the regulation of miR-4306/KDM2A axis.
Collapse
Affiliation(s)
- Xiyin Huang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Juanyong Pan
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Gaoxiong Wang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China.,Department of Hepatobiliary and Pancreatic Surgery, QuanZhou Women's and Children's Hospital, Quanzhou, Fujian, China
| | - Tiancong Huang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Chengzong Li
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Yanjun Wang
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Xinfeng Li
- Department Of Hepatobiliary And Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
10
|
Wang L, Lang B, Zhou Y, Ma J, Hu K. Up-regulation of miR-663a inhibits the cancer stem cell-like properties of glioma via repressing the KDM2A-mediated TGF-β/SMAD signaling pathway. Cell Cycle 2021; 20:1935-1952. [PMID: 34424812 DOI: 10.1080/15384101.2021.1966962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Emerging reports have shown that microRNAs (miRNAs) function as vital regulators in tumor development via modulating gene expression at the posttranscriptional level. Here, we explored the role and underlying mechanism of miR-663a in the proliferation, migration, invasion, and cancer stem cell-like (CSC) properties of glioma cells. Quantitative reverse transcription PCR (qRT-PCR) was implemented to detect miR-663a expression in glioblastoma tissues and the adjacent normal tissues. Additionally, gain- and loss-of-function assays of miR-633a were performed on U-251 MG cells or human primary glioblastoma cancer cells (pGBMC1). Cell proliferation, migration, invasion, CSC properties, and profiles of stem cell markers (including CD133, CD44) were examined by the MTT assay, Transwell assay, tumorsphere experiment, and Western blotting, respectively. The dual-luciferase reporter gene assay was performed to testify the targeted relationship between miR-663a and lysine demethylase 2A (KDM2A). The results showed that miR-663a was down-regulated in glioblastoma tissues and cells. Overexpressing miR-663a repressed the proliferation, migration, invasion, CSC properties of U-251 MG cells and pGBMC1, while miR-663a knockdown had the opposite effects. The in-vivo experiment confirmed that miR-663a repressed the growth of U-251 MG cells in nude mice. When cocultured with THP1 cells, U-251 MG cells gained enhanced proliferation, migration, invasion, and CSC properties. MiR-633a overexpression reversed THP1-mediated effects on U-251 MG cells, and reduced the "M2" polarization of THP1 cells. What's more, Mechanistically, KDM2A was targeted by miR-663a. KDM2A knockdown suppressed the progression and CSC properties of U-251 MG cells in vitro, and dampened TGF-β. Overall, those data revealed that up-regulating miR-663a reduced glioma progression by inhibiting the KDM2A-mediated TGF-β/Smad pathway.
Collapse
Affiliation(s)
- Lei Wang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Bojuan Lang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Pathology, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Youdong Zhou
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Jinyang Ma
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China.,Department of Neurosurgery, Yichang Central People's Hospital, Yichang, Hubei, China
| | - Keqi Hu
- Department of Neurosurgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China
| |
Collapse
|
11
|
Liu L, Liu J, Lin Q. Histone demethylase KDM2A: Biological functions and clinical values (Review). Exp Ther Med 2021; 22:723. [PMID: 34007332 DOI: 10.3892/etm.2021.10155] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 12/15/2022] Open
Abstract
Histone lysine demethylation modification is a critical epigenetic modification. Lysine demethylase 2A (KDM2A), a Jumonji C domain-containing demethylase, demethylates the dimethylated H3 lysine 36 (H3K36) residue and exerts little or no activity on monomethylated and trimethylated H3K36 residues. KDM2A expression is regulated by several factors, such as microRNAs, and the phosphorylation of KDM2A also plays a vital role in its function. KDM2A mainly recognizes the unmethylated region of CpG islands and subsequently demethylates histone H3K36 residues. In addition, KDM2A recognizes and binds to phosphorylated proteins, and promotes their ubiquitination and degradation. KDM2A plays an important role in chromosome remodeling and gene transcription, and is involved in cell proliferation and differentiation, cell metabolism, heterochromosomal homeostasis and gene stability. Notably, KDM2A is crucial for tumorigenesis and progression. In the present review, the documented biological functions of KDM2A in physiological and pathological processes are comprehensively summarized.
Collapse
Affiliation(s)
- Lisheng Liu
- Key Laboratory of Animal Resistance Research, College of Life Science, Shandong Normal University, Jinan, Shandong 250014, P.R. China.,Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Jiangnan Liu
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Qinghai Lin
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
12
|
Chen L, Cao Y, Wu B, Cao Y. MicroRNA-3666 Suppresses Cell Growth in Head and Neck Squamous Cell Carcinoma Through Inhibition of PFKFB3-Mediated Warburg Effect. Onco Targets Ther 2020; 13:9029-9041. [PMID: 32982293 PMCID: PMC7490100 DOI: 10.2147/ott.s251992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/09/2020] [Indexed: 12/12/2022] Open
Abstract
Purpose MicroRNA-3666 (miR-3666) is aberrantly expressed and plays critical roles in numerous human tumors. However, the expression pattern, biological role, and mechanisms of action of miR-3666 in head and neck squamous cell carcinoma (HNSCC) remain unknown. Therefore, we attempted to determine the expression status and function of miR-3666 in HNSCC and to explore the underlying mechanisms in detail. Methods In this study, quantitative real-time polymerase chain reaction was carried out to measure the expression of miR-3666 HNSCC tissues. A series of experiments, including a Cell Counting Kit-8 assay, colony formation assay, BrdU incorporation and apoptosis analysis, were applied to test whether miR-3666 affects the growth of HNSCC cells. Glucose uptake and lactate production measurements and extracellular acidification and oxygen consumption rate assays were conducted to determine the effect of miR-3666 on glycolysis. Results We found that miR-3666 showed a decreased expression in HNSCC tissues. Further functional studies demonstrated that miR-3666 inhibited the growth of HNSCC cells by suppressing cell proliferation and promoting apoptosis. Bioinformatics analysis and luciferase reporter assays identified phosphofructokinase-2/fructose-2,6-bisphosphatase 3 (PFKFB3), a key enzyme regulating glycolysis, as a direct target of miR-3666. Through inhibition of PFKFB3, miR-3666 decreased glycolysis in HNSCC cells by reducing the production of F2,6BP. Importantly, glycolysis suppression caused by miR-3666 was found to be required for its inhibitory effect on HNSCC cell growth. Conclusion Our data suggest that miR-3666 functions as a tumor suppressor by decreasing the rate of glycolysis through inhibition of PFKFB3 activity, and this miRNA may present a potential candidate for HNSCC therapy.
Collapse
Affiliation(s)
- Lan Chen
- Department of Dermatology, Affiliated Hospital of Guiyang Medical University, Guiyang, People's Republic of China.,University of Health, Guizhou Medical University, Guiyang, People's Republic of China
| | - Yaxuan Cao
- University of Health, Guizhou Medical University, Guiyang, People's Republic of China
| | - Bei Wu
- Department of Obstetrics and Gynecology, 925 Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Guiyang, People's Republic of China
| | - Yu Cao
- Department of Dermatology, Affiliated Hospital of Guiyang Medical University, Guiyang, People's Republic of China
| |
Collapse
|