1
|
Wang T, Wu Z, Li S, Chen Z, Chen Y, Yang Z. Identification of Gefitinib Resistance-Related lncRNA-miRNA-mRNA Regulatory Networks and Corresponding Prognostic Signature in Patients with Lung Adenocarcinoma. Int J Gen Med 2022; 15:7155-7168. [PMID: 36118184 PMCID: PMC9477152 DOI: 10.2147/ijgm.s369718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/01/2022] [Indexed: 12/24/2022] Open
Abstract
Purpose To identify and characterize gefitinib resistance-related (GefR-related) lncRNAs and construct a prediction model for lung adenocarcinoma (LUAD). Methods Differential expression analysis between PC9 and gefitinib-resistant PC9 (PC9GR) cell samples was performed to screen GefR-related lncRNAs and mRNAs based on the GSE34228 dataset. These lncRNAs, mRNAs, and their corresponding microRNAs (miRNAs) were used to construct the GefR-related network and PPI networks. Functional enrichment analyses were conducted using the STRING database. A prognostic signature was developed using the TCGA dataset. The reliability of the signature was tested using the Kaplan–Meier method and ROC curve. Lastly, the FZD4-associated ceRNA subnetwork was selected to confirm the in vitro expressions of the GefR-related lncRNAs using RT-qPCR assay. Results A GefR-related ceRNA network that consists of 35 miRNAs, 26 lncRNAs, and 179 mRNAs was constructed. Then, 20 hub genes were screened from the targeted mRNAs of the constructed PPI network, and enrichment analysis identified relevant enriched pathways. We also constructed a prognostic signature for LUAD based on nine mRNAs in the GefR-related ceRNA network. The 9-mRNA signature was an independent predictor of LUAD, the AUC produced by ROC analysis showed a good predictive power of the model, and Kaplan–Meier analysis showed poorer outcomes in the high-risk group, relative to the low-risk group. Lastly, MIR137HG and ZNF295-AS1 levels were found to be associated with gefitinib resistance and exerted their functions through the ceRNA mechanism. Conclusion We established a prognostic signature and identified two lncRNAs (MIR137HG and ZNF295-AS1) with potential significant roles in gefitinib resistance.
Collapse
Affiliation(s)
- Taoli Wang
- Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Zhulin Wu
- Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Shiguang Li
- Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Zhong Chen
- Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Yiqi Chen
- Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
| | - Zhenjiang Yang
- Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Correspondence: Zhenjiang Yang; Taoli Wang, Department of Oncology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China, Tel +86-755-23612697, Email ;
| |
Collapse
|
2
|
Szczepanek J, Skorupa M, Tretyn A. MicroRNA as a Potential Therapeutic Molecule in Cancer. Cells 2022; 11:1008. [PMID: 35326459 PMCID: PMC8947269 DOI: 10.3390/cells11061008] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Small noncoding RNAs, as post-translational regulators of many target genes, are not only markers of neoplastic disease initiation and progression, but also markers of response to anticancer therapy. Hundreds of miRNAs have been identified as biomarkers of drug resistance, and many have demonstrated the potential to sensitize cancer cells to therapy. Their properties of modulating the response of cells to therapy have made them a promising target for overcoming drug resistance. Several methods have been developed for the delivery of miRNAs to cancer cells, including introducing synthetic miRNA mimics, DNA plasmids containing miRNAs, and small molecules that epigenetically alter endogenous miRNA expression. The results of studies in animal models and preclinical studies for solid cancers and hematological malignancies have confirmed the effectiveness of treatment protocols using microRNA. Nevertheless, the use of miRNAs in anticancer therapy is not without limitations, including the development of a stable nanoconstruct, delivery method choices, and biodistribution. The aim of this review was to summarize the role of miRNAs in cancer treatment and to present new therapeutic concepts for these molecules. Supporting anticancer therapy with microRNA molecules has been verified in numerous clinical trials, which shows great potential in the treatment of cancer.
Collapse
Affiliation(s)
- Joanna Szczepanek
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
| | - Monika Skorupa
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Ul. Wilenska 4, 87-100 Torun, Poland;
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| | - Andrzej Tretyn
- Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Ul. Lwowska 1, 87-100 Torun, Poland;
| |
Collapse
|
3
|
Maharati A, Zanguei AS, Khalili-Tanha G, Moghbeli M. MicroRNAs as the critical regulators of tyrosine kinase inhibitors resistance in lung tumor cells. Cell Commun Signal 2022; 20:27. [PMID: 35264191 PMCID: PMC8905758 DOI: 10.1186/s12964-022-00840-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/05/2022] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the second most common and the leading cause of cancer related deaths globally. Tyrosine Kinase Inhibitors (TKIs) are among the common therapeutic strategies in lung cancer patients, however the treatment process fails in a wide range of patients due to TKIs resistance. Given that the use of anti-cancer drugs can always have side effects on normal tissues, predicting the TKI responses can provide an efficient therapeutic strategy. Therefore, it is required to clarify the molecular mechanisms of TKIs resistance in lung cancer patients. MicroRNAs (miRNAs) are involved in regulation of various pathophysiological cellular processes. In the present review, we discussed the miRNAs that have been associated with TKIs responses in lung cancer. MiRNAs mainly exert their role on TKIs response through regulation of Tyrosine Kinase Receptors (TKRs) and down-stream signaling pathways. This review paves the way for introducing a panel of miRNAs for the prediction of TKIs responses in lung cancer patients. Video Abstract
Collapse
Affiliation(s)
- Amirhosein Maharati
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Sadra Zanguei
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Yin M, Cheng M, Liu C, Wu K, Xiong W, Fang J, Li Y, Zhang B. HNRNPA2B1 as a trigger of RNA switch modulates the miRNA-mediated regulation of CDK6. iScience 2021; 24:103345. [PMID: 34805798 PMCID: PMC8590077 DOI: 10.1016/j.isci.2021.103345] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/17/2021] [Accepted: 10/22/2021] [Indexed: 01/04/2023] Open
Abstract
The functional inactivation of tumor suppressor microRNA (miRNA) is closely related to the tumorigenesis of cancer. There are instances where the miRNA and the corresponding target both exist in a cell, but the target gene silencing do not occur as expected. Herein, we found that both miR-506 and its target CDK6 are highly co-expressed in lung cancer cells. Sequence analyses suggested that a miR-506 binding site (1648–1654) and a cis-element (1785–1795) for binding by heterogeneous nuclear ribonucleoprotein A2/B1 (HNRNPA2B1) are evolutionarily conserved and forms a stem structure in the 3′ untranslated region (3′UTR) of CDK6. Furthermore, HNRNPA2B1 can bind to the stem structure to denature it and recruit the RNA helicase DExH-box helicase 9 (DHX9) to the 3′UTR, which ultimately facilitates miRNAs-mediated CDK6 silencing. These results indicate that the cis-element of the 3′UTR of CDK6, where HNRNPA2B1 binds, serves as an RNA switch to regulate miRNAs’ function in cancer cells. Both miR-506 and its target CDK6 are highly co-expressed in lung cancer HNRNPA2B1 facilitates miR-506-mediated CDK6 silence by switching structure in 3′UTR HNRNPA2B1 also recruits the DHX9 to the 3′UTR of its targets HNRNPA2B1 extensively regulates miRNAs-mediated gene silencing through binding to 3′UTR
Collapse
Affiliation(s)
- Menghui Yin
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meidie Cheng
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengli Liu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Keli Wu
- School of Life Science, University of Science and Technology of China, Hefei 230026, China
| | - Wei Xiong
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Ji Fang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| | - Yinxiong Li
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China.,University of Chinese Academy of Sciences, Beijing 100049, China.,Institute of Public Health, Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Biliang Zhang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Guangzhou, Guangdong 510530, China
| |
Collapse
|
5
|
Du D, Cao X, Duan X, Zhang X. Blocking circ_0014130 suppressed drug resistance and malignant behaviors of docetaxel resistance-acquired NSCLC cells via regulating miR-545-3p-YAP1 axis. Cytotechnology 2021; 73:571-584. [PMID: 34349347 DOI: 10.1007/s10616-021-00478-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 05/15/2021] [Indexed: 12/26/2022] Open
Abstract
Recent evidences have claimed that circular RNAs are deregulated in docetaxel (DTX) resistance in malignant tumors, including non-small-cell lung cancer (NSCLC). Hsa_circ_0014130 (circ_0014130) is a new biomarker in NSCLC. However, its role in DTX-resistant NSCLC remained to be annotated. In this study, real-time PCR was used to measure expression of circ_0014130, and circ_0014130 was upregulated in NSCLC tumors and DTX-resistant NSCLC cells (NCI-H1299/DTX and A549/DTX). MTT assay analyzed the half inhibitory concentration (IC50) of DTX, and it was lowered by circ_0014130 interference in DTX-resistant NSCLC cells. Moreover, colony formation assay, flow cytometry, transwell assays, and xenograft tumor model revealed that silencing circ_0014130 facilitated apoptosis rate of DTX-resistant NSCLC cells, suppressed the colony formation, migration and invasion, and retarded xenograft tumor growth in nude mice. Dual-luciferase reporter assay and RNA immunoprecipitation confirmed that circ_0014130 was one competing endogenous RNA (ceRNA) for miRNA (miR)-545-3p, and circ_0014130 modulated expression of yes-associated protein 1 (YAP1), a target gene for miR-545-3p. YAP1 upregulation and miR-545-3p downregulation were allied with circ_0014130 upregulation in NSCLC tumors and DTX-resistant NSCLC cells. Functionally, downregulating miR-545-3p could abate the effects of circ_0014130 knockdown in DTX-resistant NSCLC cells in vitro, whereas its overexpression exerted similar effects of circ_0014130 knockdown. Either, restoring YAP1 partially reversed miR-545-3p effects in DTX-resistant NSCLC cells. Collectively, there might be a novel circ_0014130-miR-545-3p-YAP1 ceRNA pathway in regulation of chemoresistance and malignant behaviors of DTX-resistant NSCLC cells, suggesting a potential therapeutic approach for DTX resistance.
Collapse
Affiliation(s)
- Dongjie Du
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| | - Xiaoci Cao
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| | - Xinbo Duan
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| | - Xianbo Zhang
- Oncology II, Hebei General Hospital, No. 348, Heping West Road, Xinhua District, Shijiazhuang, 050051 Hebei China
| |
Collapse
|
6
|
Zhao W, Wang J, Luo Q, Peng W, Li B, Wang L, Zhang C, Duan C. Identification of LINC02310 as an enhancer in lung adenocarcinoma and investigation of its regulatory network via comprehensive analyses. BMC Med Genomics 2020; 13:185. [PMID: 33308216 PMCID: PMC7731780 DOI: 10.1186/s12920-020-00834-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Lung adenocarcinoma (LADC) is a major subtype of non-small cell lung cancer and has one of the highest mortality rates. An increasing number of long non-coding RNAs (LncRNAs) were reported to be associated with the occurrence and progression of LADC. Thus, it is necessary and reasonable to find new prognostic biomarkers for LADC among LncRNAs. METHODS Differential expression analysis, survival analysis, PCR experiments and clinical feature analysis were performed to screen out the LncRNA which was significantly related to LADC. Its role in LADC was verified by CCK-8 assay and colony. Furthermore, competing endogenous RNA (ceRNA) regulatory network construction, enrichment analysis and protein-protein interaction (PPI) network construction were performed to investigate the downstream regulatory network of the selected LncRNA. RESULTS A total of 2431 differentially expressed LncRNAs (DELncRNAs) and 2227 differentially expressed mRNAs (DEmRNAs) were from The Cancer Genome Atlas database. Survival analysis results indicated that lnc-YARS2-5, lnc-NPR3-2 and LINC02310 were significantly related to overall survival. Their overexpression indicated poor prognostic. PCR experiments and clinical feature analysis suggested that LINC02310 was significantly correlated with TNM-stage and T-stage. CCK-8 assay and colony formation assay demonstrated that LINC02310 acted as an enhancer in LADC. In addition, 3 targeted miRNAs of LINC02310 and 414 downstream DEmRNAs were predicted. The downstream DEmRNAs were then enriched in 405 Gene Ontology terms and 11 Kyoto Encyclopedia of Genes and Genomes pathways, which revealed their potential functions and mechanisms. The PPI network showed the interactions among the downstream DEmRNAs. CONCLUSIONS This study verified LINC02310 as an enhancer in LADC and performed comprehensive analyses on its downstream regulatory network, which might benefit LADC prognoses and therapies.
Collapse
Affiliation(s)
- Wenyuan Zhao
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Jun Wang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Qingxi Luo
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Wei Peng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Bin Li
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Lei Wang
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Chaojun Duan
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China.
| |
Collapse
|
7
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
8
|
Du W, Sun L, Liu T, Zhu J, Zeng Y, Zhang Y, Wang X, Liu Z, Huang JA. The miR‑625‑3p/AXL axis induces non‑T790M acquired resistance to EGFR‑TKI via activation of the TGF‑β/Smad pathway and EMT in EGFR‑mutant non‑small cell lung cancer. Oncol Rep 2020; 44:185-195. [PMID: 32319651 PMCID: PMC7251657 DOI: 10.3892/or.2020.7579] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/20/2020] [Indexed: 02/06/2023] Open
Abstract
Gefitinib is currently the preferred treatment for non-small cell lung cancer (NSCLC) patients with epidermal growth factor receptor (EGFR)-activating mutation. However, some patients gradually develop acquired resistance after receiving treatment. In addition to secondary T790M mutation, the remaining mechanisms contributing to non-T790M mutations need to be explored. In the present study, NSCLC-derived HCC827 and PC-9 cells and the corresponding gefitinib-resistant cell lines (HCC827GR and PC9GR) were utilized. Next-generation DNA sequencing was performed on the HCC827GR and PC9GR cells. Under AXL receptor tyrosine kinase (AXL) knockdown or miR-625-3p overexpressing conditions, a cell growth inhibition assay was performed to evaluate gefitinib sensitivity. Wound healing and Transwell assays were used to examine the migratory and invasive abilities of the cells. Moreover, we also carried out western blot analysis to detect the altered downstream signaling pathway. Our study revealed markedly decreased miR-625-3p expression in the HCC827GR cell line, while its overexpression partly reversed gefitinib resistance. Integrated analysis based on Targetscan website showed that AXL can be potentially targeted by miR-625-3p and we further verified the hypothesis via dual-luciferase reporter assays. Mechanistic analysis revealed that TGF-β1-induced EMT may contribute to the miR-625-3p/AXL axis-mediated gefitinib resistance. Our data demonstrated that miR-625-3p contributes to the acquired resistance of gefitinib, which may provide novel insight to combat resistance to EGFR-TKIs.
Collapse
Affiliation(s)
- Wenwen Du
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Lin Sun
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Ting Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jianjie Zhu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yuanyuan Zeng
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Yang Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xueting Wang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zeyi Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jian-An Huang
- Department of Respiratory Medicine, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|