1
|
Akula S, Gonzalez CG, Kermet S, Burleson M. Natural compounds solasonine and alisol B23-acetate target GLI3 signaling to block oncogenesis in MED12-altered breast cancer. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2024; 13:127-135. [PMID: 38915457 PMCID: PMC11194031 DOI: 10.22099/mbrc.2024.49044.1915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Breast cancer remains to be the second leading cause of cancer deaths worldwide thereby highlighting the critical need to find superior treatment strategies for this disease. In the current era of cancer treatment, personalized medicine is garnering much attention as this type of treatment is more selective thereby minimizing harmful side effects. Personalized medicine is dependent upon knowing the underlying genetic landscape of the initial tumor. In our study, we focused our efforts on a specific subset of breast cancer that harbors genetic alterations in the Mediator subunit 12 (MED12). Our results show that loss of MED12 leads to enhanced cellular proliferation and colony formation of breast cancer cells through a mechanism that involves activation of GLI3-dependent SHH signaling, a pathway that is central to breast development and homeostasis. To find a personalized treatment option for this subset of breast cancer, we employed a natural compound screening strategy which uncovered a total of ten compounds that selectively target MED12 knockdown breast cancer cells. Our results show that two of these ten compounds, solasonine and alisol B23-acetate, block GLI3-dependent SHH signaling which leads to a reversal of enhanced cellular proliferation and colony formation ability. Thus, our findings provide promising insight into a novel personalized treatment strategy for patients suffering from MED12-altered breast cancer.
Collapse
Affiliation(s)
- Shivani Akula
- Department of Chemistry and Biochemistry, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Cristian G. Gonzalez
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
- These authors contributed equally to this work
| | - Sophia Kermet
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| | - Marieke Burleson
- Department of Biology, University of the Incarnate Word, San Antonio, TX, USA
| |
Collapse
|
2
|
Yulak F, Filiz AK, Joha Z, Ergul M. Mechanism of anticancer effect of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor on HT-29 Cells. Med Oncol 2023; 40:341. [PMID: 37891359 DOI: 10.1007/s12032-023-02221-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023]
Abstract
The PI3K pathway plays a crucial role in tumor cell proliferation across various cancers, including colon cancer, making it a promising treatment target. This study aims to investigate the antiproliferative activity of ETP-45658, a PI3K/AKT/mTOR pathway inhibitor, on colon cancer and elucidate the underlying mechanisms. HT-29 colon cancer cells were treated with varying doses of ETP 45658 and its cytotoxic effect assessed using the XTT cell viability assay.ELISA was also used to measure TAS, TOS, Bax, BCL-2, cleaved caspase 3, cleaved PARP, and 8-oxo-dG levels. Flow cytometry was performed to investigate apoptosis, cell cycle, caspase 3/7 activity, and mitochondrial membrane potential. Additionally, following the administration of DAPI (4,6-diamidino-2-phenylindole) dye, the cells were visualized using an immunofluorescence microscope. It was observed that ETP-45658 exerted a dose-dependent and statistically significant antiproliferative effect on HT-29 colon cancer cells. Further investigations using the IC50 dose showed that ETP-45658 decreased TAS levels and increased TOS levels and revealed that it upregulated apoptotic proteins while downregulating anti-apoptotic proteins. Our findings also showed that it increased Annexin V binding, arrested the cell cycle at G0/G1 phase, induced caspase 3/7 activity, impaired mitochondrial membrane potential, and ultimately triggered apoptosis in HT-29 cells. ETP-45658 shows promise against colon cancer by inducing cell death, and oxidative stress, and arresting the cell cycle. Targeting the PI3K/AKT/mTOR pathway with ETP-45658 offers exciting potential for colon cancer treatment.
Collapse
Affiliation(s)
- Fatih Yulak
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Ahmet Kemal Filiz
- Departments of Physiology, School of Medicine, Cumhuriyet University, Sivas, Turkey
| | - Zıad Joha
- Department of Pharmacology, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ergul
- Department of Biochemistry, Faculty of Pharmacy, Sivas Cumhuriyet University, Sivas, Turkey.
| |
Collapse
|
3
|
Zhang T, Zhang F, Zhang Y, Li H, Zhu G, Weng T, Huang C, Wang P, He Y, Hu J, Ge G. The roles of serine hydrolases and serum albumin in alisol B 23-acetate hydrolysis in humans. Front Pharmacol 2023; 14:1160665. [PMID: 37089921 PMCID: PMC10117764 DOI: 10.3389/fphar.2023.1160665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction: Alisol B 23-acetate (AB23A), a major bioactive constituent in the Chinese herb Zexie (Rhizoma Alismatis), has been found with multiple pharmacological activities. AB23A can be readily hydrolyzed to alisol B in mammals, but the hydrolytic pathways of AB23A in humans and the key enzymes responsible for AB23A hydrolysis are still unrevealed. This study aims to reveal the metabolic organs and the crucial enzymes responsible for AB23A hydrolysis in human biological systems, as well as to decipher the impact of AB23A hydrolysis on its biological effects. Methods: The hydrolytic pathways of AB23A in human plasma and tissue preparations were carefully investigated by using Q-Exactive quadrupole-Orbitrap mass spectrometer and LC-UV, while the key enzymes responsible for AB23A hydrolysis were studied via performing a set of assays including reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses. Finally, the agonist effects of both AB23A and its hydrolytic metabolite(s) on FXR were tested at the cellular level. Results: AB23A could be readily hydrolyzed to form alisol B in human plasma, intestinal and hepatic preparations, while human butyrylcholinesterase (hBchE) and human carboxylesterases played key roles in AB23A hydrolysis in human plasma and tissue preparations, respectively. It was also found that human serum albumin (hSA) could catalyze AB23A hydrolysis, while multiple lysine residues of hSA were covalently modified by AB23A, suggesting that hSA catalyzed AB23A hydrolysis via its pseudo-esterase activity. Biological tests revealed that both AB23A and alisol B exhibited similar FXR agonist effects, indicating AB23A hydrolysis did not affect its FXR agonist effect. Discussion: This study deciphers the hydrolytic pathways of AB23A in human biological systems, which is very helpful for deep understanding of the metabolic rates of AB23A in humans, and useful for developing novel prodrugs of alisol B with desirable pharmacokinetic behaviors.
Collapse
Affiliation(s)
- Tiantian Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Feng Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yani Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hongxin Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Guanghao Zhu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Taotao Weng
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Huang
- School of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqi He
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jing Hu
- Department of Nephrology, The Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Jing Hu,
| | - Guangbo Ge
- School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Guangbo Ge, ; Jing Hu,
| |
Collapse
|
4
|
Chen Y, Lu J, Xie Z, Tang J, Lian X, Li X. The Mechanism of Alisol B23 Acetate Inhibiting Lung Cancer: Targeted Regulation of CD11b/CD18 to Influence Macrophage Polarization. Drug Des Devel Ther 2022; 16:3677-3689. [PMID: 36277599 PMCID: PMC9583238 DOI: 10.2147/dddt.s375073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/23/2022] [Indexed: 11/11/2022] Open
Abstract
Background Tumor microenvironment has attracted more and more attention in oncology. Alisol B23 acetate (AB23A) inhibits the proliferation of tumor cells including non-small cell lung cancer (NSCLC) cells. However, whether AB23A plays a role in the tumor microenvironment of NSCLC still remains obscure. Methods After THP-1 cells were polarized to M0 type by PMA, M0 macrophages were differentiated into M1 by LPS and IFNγ, and were differentiated into M2 by IL-4 and IL-13. The differentiation of THP-1 cells was detected by flow cytometry. After AB23A was given to macrophage RT-qPCR and ELISA detected the expressions of IL-6, IL-1β, IL-10 and TGF-β. Western blot and RT-qPCR detected the expressions of CD11b and CD18 at both mRNA and protein levels. Lung cancer cell A549 cells were induced by above related macrophage culture medium. Cell proliferation was detected by CCK-8. Tunel, wound healing and Transwell detected the apoptotic, migration and invasion capabilities. Next, M0 and M1-type macrophages were cultured in the cell culture medium of conventional A549 cells, to which AB23A was added. Subsequently, cell differentiation and inflammatory response were measured. Finally, the expression of CD18 in A549 cells was knocked down to construct NSCLC tumor-bearing mice and AB23A was applied for intragastric administration. Immunohistochemistry detected the polarization of macrophages in tumor tissues. Western blot detected the expressions of CD11b, CD18, invasion-, migration- and apoptosis-related proteins. Results AB23A promoted the polarization of macrophages towards M1, thus promoting the apoptosis and inhibiting the invasion and migration of A549 cells. The tumor cell culture medium induced M0 macrophages to M2, while AB23A reversed this effect. AB23A targeted CD11b/CD18 and improved the polarization of macrophages, thereby affecting tumor invasion, migration and apoptosis. Conclusion AB23A affected the polarization of tumor-associated macrophages through the targeted regulation of CD11b/CD18, thus inhibiting the development of lung cancer.
Collapse
Affiliation(s)
- Yingna Chen
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China,Correspondence: Yingna Chen, School of Pharmacy, School of Medicine, Changzhou University, No. 21, Lake Gehu Road, Wujin District, Changzhou, Jiangsu, People’s Republic of China, Tel +86-13813661630, Email
| | - Jieya Lu
- Department of Nephrology, Yixing Hospital of Traditional Chinese Medicine, Yixing, Jiangsu, People’s Republic of China,Jieya Lu, Department of Nephrology, Yixing Hospital of Traditional Chinese Medicine, 128 Yangquan East Road, Yicheng Street, Yixing, Jiangsu, People’s Republic of China, Tel +86-15906153777, Email
| | - Zhihao Xie
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| | - Jialing Tang
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| | - Xuejiao Lian
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| | - Xiuwen Li
- School of Pharmacy, School of Medicine, Changzhou University, Changzhou, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
Bailly C. Pharmacological Properties and Molecular Targets of Alisol Triterpenoids from Alismatis Rhizoma. Biomedicines 2022; 10:biomedicines10081945. [PMID: 36009492 PMCID: PMC9406200 DOI: 10.3390/biomedicines10081945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
More than 100 protostane triterpenoids have been isolated from the dried rhizomes of Alisma species, designated Alismatis rhizoma (AR), commonly used in Asian traditional medicine to treat inflammatory and vascular diseases. The main products are the alisols, with the lead compounds alisol-A/-B and their acetate derivatives being the most abundant products in the plant and the best-known bioactive products. The pharmacological effects of Ali-A, Ali-A 24-acetate, Ali-B, Ali-B 23-acetate, and derivatives have been analyzed to provide an overview of the medicinal properties, signaling pathways, and molecular targets at the origin of those activities. Diverse protein targets have been proposed for these natural products, including the farnesoid X receptor, soluble epoxide hydrolase, and other enzymes (AMPK, HCE-2) and functional proteins (YAP, LXR) at the origin of the anti-atherosclerosis, anti-inflammatory, antioxidant, anti-fibrotic, and anti-proliferative activities. Activities were classified in two groups. The lipid-lowering and anti-atherosclerosis effects benefit from robust in vitro and in vivo data (group 1). The anticancer effects of alisols have been largely reported, but, essentially, studies using tumor cell lines and solid in vivo data are lacking (group 2). The survey shed light on the pharmacological properties of alisol triterpenoids frequently found in traditional phytomedicines.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France
| |
Collapse
|
6
|
Alisol B 23-Acetate Increases the Antitumor Effect of Bufalin on Liver Cancer through Inactivating Wnt/β-Catenin Axis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6249534. [PMID: 35572840 PMCID: PMC9106498 DOI: 10.1155/2022/6249534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/01/2022] [Accepted: 03/13/2022] [Indexed: 12/11/2022]
Abstract
Objective Liver cancer seriously threatens the health of people. Meanwhile, it has been reported that bufalin could act as an inhibitor in liver cancer. In addition, alisol B 23-acetate is a natural product derived from Alisma plantago-aquatica Linn which has an antitumor effect. In this study, we aimed to explore whether alisol B 23-acetate could increase the antitumor effect of bufalin on liver cancer. Methods In order to detect the effect of alisol B 23-acetate in combination with bufalin on liver cancer, human liver cancer SMMC-7721 and MHCC97 cells were used as subjects. Bufalin and alisol B 23-acetate were performed on cells. Cell viability was tested by MTT assay. In addition, flow cytometry was performed to assess the cell apoptosis. Autophagy-related protein levels were tested by western blotting. Results The data revealed that bufalin significantly decreased the viability of liver cancer cells, and the inhibitory effect was further increased by alisol B 23-acetate. In addition, alisol B 23-acetate notably enhanced the apoptotic effect of bufalin on liver cancer cells through mediation of Mcl-1, Bax, Bcl-2, and cleaved caspase-3. Meanwhile, alisol B 23-acetate in combination with bufalin induced the autophagy in liver cancer cells through mediation of Beclin-1 and p62. Furthermore, alisol B 23-acetate in combination with bufalin significantly downregulated the level of GSK-3β and increased the expression of β-catenin in liver cancer cells. Conclusion In summary, these findings provide the first evidence that alisol B 23-acetate improves the anticancer activity of bufalin on liver cancer through activation of the Wnt/β-catenin axis, and these outcomes might shed new lights on exploring the new methods against liver cancer.
Collapse
|
7
|
Chen X, Liu H. Alisol A Inhibited the Proliferation, Migration, and Invasion of Nasopharyngeal Carcinoma Cells by Inhibiting the Hippo Signaling Pathway. Yonsei Med J 2021; 62:895-902. [PMID: 34558868 PMCID: PMC8470560 DOI: 10.3349/ymj.2021.62.10.895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/07/2021] [Accepted: 07/13/2021] [Indexed: 12/09/2022] Open
Abstract
PURPOSE Alisol A is a bioactive triterpenoid isolated from the Rhizoma Alismatis. Previous studies have shown that alisol A has anticancer potential. In this study, we explored the effect of alisol A on the growth of nasopharyngeal carcinoma (NPC) cells. MATERIALS AND METHODS MTT assay, colony formation assay, flow cytometry, transwell assay, wound healing assay, and western blotting were used to assess cell viability, proliferation, cell cycle, migration, invasion, and protein expression, respectively, in vitro. AutoDock Vina and Discovery Studio software were used for molecular docking. RESULTS Alisol A inhibited the viability, proliferation, migration, and invasion of NPC cells. The molecular docking simulation assay confirmed that alisol A bound to YAP protein. In addition, alisol A promoted the phosphorylation of YAP and suppressed the expression of YAP in NPC cells. CONCLUSION Alisol A inhibited the proliferation, migration, and invasion of NPC cells by inhibiting the Hippo signaling pathway. Alisol A may be a candidate drug for NPC.
Collapse
Affiliation(s)
- Xianghong Chen
- Department of Otolaryngology, Affiliated Hospital of Hebei University, Hebei, China
| | - Huiqing Liu
- Department of Otolaryngology, Affiliated Hospital of Hebei University, Hebei, China.
| |
Collapse
|
8
|
Promising Anticancer Activities of Alismatis rhizome and Its Triterpenes via p38 and PI3K/Akt/mTOR Signaling Pathways. Nutrients 2021; 13:nu13072455. [PMID: 34371964 PMCID: PMC8308894 DOI: 10.3390/nu13072455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/18/2022] Open
Abstract
The flowering plant genus Alisma, which belongs to the family Alismataceae, comprises 11 species, including Alisma orientale, Alisma canaliculatum, and Alisma plantago-aquatica. Alismatis rhizome (Ze xie in Chinese, Takusha in Japanese, and Taeksa in Korean, AR), the tubers of medicinal plants from Alisma species, have long been used to treat inflammatory diseases, hyperlipidemia, diabetes, bacterial infection, edema, oliguria, diarrhea, and dizziness. Recent evidence has demonstrated that its extract showed pharmacological activities to effectively reverse cancer-related molecular targets. In particular, triterpenes naturally isolated from AR have been found to exhibit antitumor activity. This study aimed to describe the biological activities and plausible signaling cascades of AR and its main compounds in experimental models representing cancer-related physiology and pathology. Available in vitro and in vivo studies revealed that AR extract possesses anticancer activity against various cancer cells, and the efficacy might be attributed to the cytotoxic and antimetastatic effects of its alisol compounds, such as alisol A, alisol B, and alisol B 23-acetate. Several beneficial functions of triterpenoids found in AR might be due to p38 activation and inhibition of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathways. Moreover, AR and its triterpenes inhibit the proliferation of cancer cells that are resistant to chemotherapy. Thus, AR and its triterpenes may play potential roles in tumor attack, as well as a therapeutic remedy alone and in combination with other chemotherapeutic drugs.
Collapse
|
9
|
Albuquerque C, Manguinhas R, Costa JG, Gil N, Codony-Servat J, Castro M, Miranda JP, Fernandes AS, Rosell R, Oliveira NG. A narrative review of the migration and invasion features of non-small cell lung cancer cells upon xenobiotic exposure: insights from in vitro studies. Transl Lung Cancer Res 2021; 10:2698-2714. [PMID: 34295671 PMCID: PMC8264350 DOI: 10.21037/tlcr-21-121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 01/03/2023]
Abstract
Lung cancer (LC) is the leading cause of cancer deaths worldwide, being non-small lung cancer (NSCLC) sub-types the most prevalent. Since most LC cases are only detected during the last stage of the disease the high mortality rate is strongly associated with metastases. For this reason, the migratory and invasive capacity of these cancer cells as well as the mechanisms involved have long been studied to uncover novel strategies to prevent metastases and improve the patients’ prognosis. This narrative review provides an overview of the main in vitro migration and invasion assays employed in NSCLC research. While several methods have been developed, experiments using conventional cell culture models prevailed, specifically the wound-healing and the transwell migration and invasion assays. Moreover, it is provided herewith a summary of the available information concerning chemical contaminants that may promote the migratory/invasive properties of NSCLC cells in vitro, shedding some light on possible LC risk factors. Most of the reported agents with pro-migration/invasion effects derive from cigarette smoking [e.g., Benzo(a)pyrene and cadmium] and air pollution. This review further presents several studies in which different dietary/plant-derived compounds demonstrated to impair migration/invasion processes in NSCLC cells in vitro. These chemicals that have been proposed as anti-migratory consisted mainly of natural bioactive substances, including polyphenols non-flavonoids, flavonoids, bibenzyls, terpenes, alkaloids, and steroids. Some of these compounds may eventually represent novel therapeutic strategies to be considered in the future to prevent metastasis formation in LC, which highlights the need for additional in vitro methodologies that more closely resemble the in vivo tumor microenvironment and cancer cell interactions. These studies along with adequate in vivo models should be further explored as proof of concept for the most promising compounds.
Collapse
Affiliation(s)
- Catarina Albuquerque
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Rita Manguinhas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - João G Costa
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Nuno Gil
- Lung Cancer Unit, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Jordi Codony-Servat
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain
| | - Matilde Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Joana P Miranda
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Ana S Fernandes
- CBIOS, Universidade Lusófona's Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Rafael Rosell
- Laboratory of Oncology/Pangaea Oncology S.L., Quirón-Dexeus University Institute, Barcelona, Spain.,Laboratory of Cellular and Molecular Biology, Institute for Health Science Research Germans Trias i Pujol (IGTP), Campus Can Ruti, Barcelona, Spain.,Internal Medicine Department, Universitat Autónoma de Barcelona, Campus de la UAB, Barcelona, Spain
| | - Nuno G Oliveira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
10
|
Reactive oxygen species generation and mitochondrial dysfunction for the initiation of apoptotic cell death in human hepatocellular carcinoma HepG2 cells by a cyclic dipeptide Cyclo(-Pro-Tyr). Mol Biol Rep 2020; 47:3347-3359. [PMID: 32248385 DOI: 10.1007/s11033-020-05407-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/26/2020] [Indexed: 12/15/2022]
Abstract
Cyclic dipeptides are increasingly gaining importance as considering its significant biological and pharmacological activities. This study was aimed to investigate the anticancer activity of a dipeptide Cyclo(-Pro-Tyr) (DP) identified from marine sponge Callyspongia fistularis symbiont Bacillus pumilus AMK1 and the underlying apoptotic mechanisms in the liver cancer HepG2 cell lines. MTT assay was done to demonstrate the cytotoxic effect of DP in HepG2 cells and mouse Fibroblast McCoy cells. Initially, apoptosis inducing activity of DP was identified using propidium iodide (PI) and acridine orange/ethidium bromide (AO/EB) dual staining, then it was confirmed by DNA fragmentation assay and western blotting analysis of apoptosis related markers Bax, Bcl-2, cytochrome c, caspase-3 and cleaved poly (ADP-ribose) polymerase (PARP). Rhodamine 123 staining was performed to observe DP effects on the mitochondrial membrane potential (MMP) and DCFH-DA (Dichloro-dihydro-fluorescein diacetate) staining was done to measure the intracellular reactive oxygen species (ROS) levels. The MTT results revealed that DP initiated dose-dependent cytotoxicity in HepG2 cells, but no significant toxicity in mouse Fibroblast McCoy cells treated with DP at the specified concentrations. DP induced apoptosis, which is confirmed by the appearance of apoptotic bodies with PI and AO/EB dual staining, and DNA fragmentation. DP significantly elevated the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), enhanced cytochrome c release from mitochondria, increased caspase-3 activation, the cleavage of PARP and increased intracellular reactive oxygen species (ROS) levels. Besides this, DP successfully inhibited the phosphorylation of PI3K, AKT and increased PTEN expression. These results suggested DP might have anti-cancer effect by initiating apoptosis through mitochondrial dysfunction and downregulating PI3K/Akt signaling pathway in HepG2 cells with no toxicity effect on normal fibroblast cells. Therefore, DP may be developed as a potential alternative therapeutic agent for treating hepatocellular carcinoma.
Collapse
|