1
|
Sun L, Fan C, Xu P, Sun FH, Tang HH, Wang WD. Identification of prognostic biomarkers for hepatocellular carcinoma with vascular invasion. Am J Transl Res 2024; 16:2828-2839. [PMID: 39114683 PMCID: PMC11301501 DOI: 10.62347/sqzw3775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/20/2024] [Indexed: 08/10/2024]
Abstract
OBJECTIVE Vascular invasion (VI) profoundly impacts the prognosis of hepatocellular carcinoma (HCC), yet the underlying biomarkers and mechanisms remain elusive. This study aimed to identify prognostic biomarkers for HCC patients with VI. METHODS Transcriptome data from primary HCC tissues and HCC tissues with VI were obtained through the Genome Expression Omnibus database. Differentially expressed genes (DEGs) in the two types of tissues were analyzed using functional enrichment analysis to evaluate their biological functions. We examined the correlation between DEGs and prognosis by combining HCC transcriptome data and clinical information from The Cancer Genome Atlas database. Univariate and multivariate Cox regression analyses, along with the least absolute shrinkage and selection operator (LASSO) method were utilized to develop a prognostic model. The effectiveness of the model was assessed through time-dependent receiver operating characteristic (ROC) curve, calibration diagram, and decision curve analysis. RESULTS In the GSE20017 and GSE5093 datasets, a total of 83 DEGs were identified. Gene Ontology analysis indicated that these DEGs were predominantly associated with xenobiotic stimulus, collagen-containing extracellular matrix, and oxygen binding. Additionally, Kyoto Encyclopedia of Genes and Genomes analysis revealed that the DEGs were primarily involved in immune defense and cellular signal transduction. Cox and LASSO regression further identified 7 genes (HSPA8, ABCF2, EAF1, MARCO, EPS8L3, PLA3G1B, C6), which were used to construct a predictive model in the training cohort. We used X-tile software to calculate the optimal cut-off value to stratify HCC patients into low-risk and high-risk groups. Notably, the high-risk group exhibited poorer prognosis than the low-risk group (P < 0.001). The model demonstrated area under the ROC curve (AUC) values of 0.815, 0.730, and 0.710 at 1-year, 3-year, and 5-year intervals in the training cohort, respectively. In the validation cohort, the corresponding AUC values were 0.701, 0.571, and 0.575, respectively. The C-index of the calibration curve for the training and validation cohorts were 0.716 and 0.665. Decision curve analysis revealed the model's efficacy in guiding clinical decision-making. CONCLUSIONS The study indicates that 7 genes may be potential prognostic biomarkers and treatment targets for HCC patients with VI.
Collapse
Affiliation(s)
| | - Chen Fan
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Ping Xu
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Fei-Hu Sun
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | - Hao-Huan Tang
- Department of Interventional Radiology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi People’s Hospital, Wuxi Medical Cencer, Nanjing Medical UniversityWuxi 214000, Jiangsu, China
| | | |
Collapse
|
2
|
Qi C, Ma J, Sun J, Wu X, Ding J. The role of molecular subtypes and immune infiltration characteristics based on disulfidptosis-associated genes in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204782. [PMID: 37315289 PMCID: PMC10292876 DOI: 10.18632/aging.204782] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
Lung adenocarcinoma (LUAD) is the most common type of lung cancer which accounts for about 40% of all lung cancers. Early detection, risk stratification and treatment are important for improving outcomes for LUAD. Recent studies have found that abnormal accumulation of cystine and other disulfide occurs in the cell under glucose starvation, which induces disulfide stress and increases the content of disulfide bond in actin cytoskeleton, resulting in cell death, which is defined as disulfidptosis. Because the study of disulfidptosis is in its infancy, its role in disease progression is still unclear. In this study, we detected the expression and mutation of disulfidptosis genes in LUAD using a public database. Clustering analysis based on disulfidptosis gene was performed and differential genes of disulfidptosis subtype were analyzed. 7 differential genes of disulfidptosis subtype were used to construct a prognostic risk model, and the causes of prognostic differences were investigated by immune-infiltration analysis, immune checkpoint analysis, and drug sensitivity analysis. qPCR was used to verify the expression of 7 key genes in lung cancer cell line (A549) and normal bronchial epithelial cell line (BEAS-2B). Since G6PD had the highest risk factor of lung cancer, we further verified the protein expression of G6PD in lung cancer cells by western blot, and confirmed through colony formation experiment that interference with G6PD was able to significantly inhibit the proliferation ability of lung cancer cells. Our results provide evidence for the role of disulfidptosis in LUAD and provide new ideas for individualized precision therapy of LUAD.
Collapse
Affiliation(s)
- Cui Qi
- Department of Respiratory Medicine, Qingdao Women’s and Children’s Hospital, Qingdao, China
| | - Jianmin Ma
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jinjin Sun
- Department of Operating Room, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaolin Wu
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China
| | - Jian Ding
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Fan Z, Li M, Xu Y, Ge C, Gu J. EPS8L3 promotes pancreatic cancer proliferation and metastasis by activating GSK3B. J Med Biochem 2023; 42:105-112. [PMID: 36819133 PMCID: PMC9920878 DOI: 10.5937/jomb0-38840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/11/2022] [Indexed: 11/02/2022] Open
Abstract
Background We intended to investigate the role and regulatory mechanism of EPS8L3 in increase the development of pancreatic cancer (PC). Methods In order to analyze the relationship between EPS8L3 level and clinicopathological indicators of PC patients, qRT-PCR was used to detect the expression of EPS8L3 in tumor specimens of 40 PC patients. EPS8L3 knockdown models were then constructed in PC cell lines. Furthermore, the effect of EPS8L3 on PC cell function was analyzed by CCK-8 and Transwell assay. Dual luciferase reporter gene assay and recovery assay were used to further investigate the underlying mechanism. Results qRT-PCR results indicated that EPS8L3 was highly expressed in PC tissues compared with adjacent ones. At the same time, the incidence of distant metastasis was higher in PC patients with high EPS8L3 level. In vitro analysis such as CCK-8 and Transwell experimentations indicated that knockdown of EPS8L3 markedly inhibited the proliferative and metastatic ability. Bio-informatics together with luciferase report assay proposing that EPS8L3 can target GSK3B. Western Blot results revealed that knockdown of EPS8L3 markedly reduced the GSK3B expression in PC cells, and there was a positively associated between the two in PC cells. In addition, the recovery experimentation proved that EPS8L3 and GSK3B have a mutual regulation effect. Overexpression of GSK3B can reversal the prohibitive effect of EPS8L3 knockdown on the malignant development of PC cells, thereby jointly regulating the occurrence and development of PC. Conclusions EPS8L3 promotes the development of PC by regulating GSK3B, suggesting that EPS8L3 can be used as a biomarker for early diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Zun Fan
- Changshu No.1 People's Hospital Affiliated to Soochow University, Department of General Surgery, Changshu, China
| | - Ming Li
- Changshu No.1 People's Hospital Affiliated to Soochow University, Department of General Surgery, Changshu, China
| | - Yinjie Xu
- Changshu No.1 People's Hospital Affiliated to Soochow University, Department of General Surgery, Changshu, China
| | - Chenxing Ge
- Changshu No.1 People's Hospital Affiliated to Soochow University, Department of General Surgery, Changshu, China
| | - Jianfeng Gu
- Changshu No.1 People's Hospital Affiliated to Soochow University, Department of General Surgery, Changshu, China
| |
Collapse
|
4
|
Aljabban J, Rohr M, Syed S, Cohen E, Hashi N, Syed S, Khorfan K, Aljabban H, Borkowski V, Segal M, Mukhtar M, Mohammed M, Boateng E, Nemer M, Panahiazar M, Hadley D, Jalil S, Mumtaz K. Dissecting novel mechanisms of hepatitis B virus related hepatocellular carcinoma using meta-analysis of public data. World J Gastrointest Oncol 2022; 14:1856-1873. [PMID: 36187396 PMCID: PMC9516659 DOI: 10.4251/wjgo.v14.i9.1856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 04/26/2022] [Accepted: 08/07/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is a cause of hepatocellular carcinoma (HCC). Interestingly, this process is not necessarily mediated through cirrhosis and may in fact involve oncogenic processes. Prior studies have suggested specific oncogenic gene expression pathways were affected by viral regulatory proteins. Thus, identifying these genes and associated pathways could highlight predictive factors for HCC transformation and has implications in early diagnosis and treatment.
AIM To elucidate HBV oncogenesis in HCC and identify potential therapeutic targets.
METHODS We employed our Search, Tag, Analyze, Resource platform to conduct a meta-analysis of public data from National Center for Biotechnology Information’s Gene Expression Omnibus. We performed meta-analysis consisting of 155 tumor samples compared against 185 adjacent non-tumor samples and analyzed results with ingenuity pathway analysis.
RESULTS Our analysis revealed liver X receptors/retinoid X receptor (RXR) activation and farnesoid X receptor/RXR activation as top canonical pathways amongst others. Top upstream regulators identified included the Ras family gene rab-like protein 6 (RABL6). The role of RABL6 in oncogenesis is beginning to unfold but its specific role in HBV-related HCC remains undefined. Our causal analysis suggests RABL6 mediates pathogenesis of HBV-related HCC through promotion of genes related to cell division, epigenetic regulation, and Akt signaling. We conducted survival analysis that demonstrated increased mortality with higher RABL6 expression. Additionally, homeobox A10 (HOXA10) was a top upstream regulator and was strongly upregulated in our analysis. HOXA10 has recently been demonstrated to contribute to HCC pathogenesis in vitro. Our causal analysis suggests an in vivo role through downregulation of tumor suppressors and other mechanisms.
CONCLUSION This meta-analysis describes possible roles of RABL6 and HOXA10 in the pathogenesis of HBV-related HCC. RABL6 and HOXA10 represent potential therapeutic targets and warrant further investigation.
Collapse
Affiliation(s)
- Jihad Aljabban
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Rohr
- Department of Medicine, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Saad Syed
- Department of Medicine, Northwestern Memorial Hospital, Chicago, IL 60611, United States
| | - Eli Cohen
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Naima Hashi
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, United States
| | - Sharjeel Syed
- Department of Medicine, University of Chicago Hospitals, Chicago, IL 60637, United States
| | - Kamal Khorfan
- Department of Gastroenterology and Hepatology, University of California San Francisco-Fresno, Fresno, CA 93701, United States
| | - Hisham Aljabban
- Department of Medicine, Barry University, Miami, FL 33161, United States
| | - Vincent Borkowski
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Michael Segal
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Mohamed Mukhtar
- Department of Medicine, Michigan State University College of Human Medicine, Lansing, MI 49503, United States
| | - Mohammed Mohammed
- Department of Medicine, Windsor University School of Medicine, Frankfort, IL 60423, United States
| | - Emmanuel Boateng
- Department of Medicine, Vanderbilt Medical Center, Nashville, TN 37232, United States
| | - Mary Nemer
- Department of Medicine, University of Wisconsin Hospital and Clinics, Madison, WI 53792, United States
| | - Maryam Panahiazar
- Department of Surgery, University of California San Francisco, San Francisco, CA 94143, United States
| | - Dexter Hadley
- Department of Pathology, University of Central Florida College of Medicine, Orlando, FL 32827, United States
| | - Sajid Jalil
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| | - Khalid Mumtaz
- Department of Gastroenterology and Hepatology, Ohio State University Wexner Medical Center, Columbus, OH 43210, United States
| |
Collapse
|