1
|
Wei J, Ai Q, Lv P, Fang W, Wang Z, Zhao J, Xu W, Chen L, Dong J, Luo B. Acupoint catgut embedding attenuates oxidative stress and cognitive impairment in chronic cerebral ischemia by inhibiting the Ang II/AT1R/NOX axis. Pflugers Arch 2024; 476:1249-1261. [PMID: 38940824 DOI: 10.1007/s00424-024-02981-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/24/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Chronic cerebral ischemia (CCI) is a common neurological disorder, characterized by progressive cognitive impairment. Acupoint catgut embedding (ACE) represents a modern acupuncture form that has shown neuroprotective effects; nevertheless, its effects on CCI and the mechanisms remain largely unknown. Here, we aimed to explore the therapeutic action of ACE in CCI-induced cognitive impairment and its mechanisms. The cognitive function of CCI rats was determined using Morris water maze test, and histopathological changes in the brain were assessed through hematoxylin-eosin (HE) staining. To further explore the molecular mechanisms, the expression levels of oxidative stress markers and the Ang II/AT1R/NOX axis-associated molecules in the hippocampus were evaluated using enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry. Here, we observed that ACE treatment alleviated cognitive dysfunction and histopathological injury in CCI rats. Intriguingly, candesartan (an AT1R blocker) enhanced the beneficial effects of ACE on ameliorating cognitive impairment in CCI rats. Mechanistically, ACE treatment blocked the Ang II/AT1R/NOX pathway and subsequently suppressed oxidative stress, thus mitigating cognitive impairment in CCI. Our findings first reveal that ACE treatment could suppress cognitive impairment in CCI, which might be partly due to the suppression of Ang II/AT1R/NOX axis.
Collapse
Affiliation(s)
- Jurui Wei
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Qi Ai
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Peier Lv
- Science and Education Section, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Wenyao Fang
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Zixuan Wang
- Department of Anesthesiology, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Jiumei Zhao
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Wenqing Xu
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Lin Chen
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China
| | - Jun Dong
- Department of Rehabilitation, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China.
| | - Bijun Luo
- Department of Respiratory Medicine, The First People's Hospital of Hangzhou Lin'an District, No.360 YiKang Street, Hangzhou, 311300, China.
| |
Collapse
|
2
|
Rajeev V, Tabassum NI, Fann DY, Chen CP, Lai MK, Arumugam TV. Intermittent Metabolic Switching and Vascular Cognitive Impairment. J Obes Metab Syndr 2024; 33:92-107. [PMID: 38736362 PMCID: PMC11224924 DOI: 10.7570/jomes24010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024] Open
Abstract
Intermittent fasting (IF), a dietary pattern alternating between eating and fasting periods within a 24-hour cycle, has garnered recognition for its potential to enhance both healthspan and lifespan in animal models and humans. It also shows promise in alleviating age-related diseases, including neurodegeneration. Vascular cognitive impairment (VCI) spans a severity range from mild cognitive deficits to severe cognitive deficits and loss of function in vascular dementia. Chronic cerebral hypoperfusion has emerged as a significant contributor to VCI, instigating vascular pathologies such as microbleeds, blood-brain barrier dysfunction, neuronal loss, and white matter lesions. Preclinical studies in rodents strongly suggest that IF has the potential to attenuate pathological mechanisms, including excitotoxicity, oxidative stress, inflammation, and cell death pathways in VCI models. Hence, this supports evaluating IF in clinical trials for both existing and at-risk VCI patients. This review compiles existing data supporting IF's potential in treating VCI-related vascular and neuronal pathologies, emphasizing the mechanisms by which IF may mitigate these issues. Hence providing a comprehensive overview of the available data supporting IF's potential in treating VCI by emphasizing the underlying mechanisms that make IF a promising intervention for VCI.
Collapse
Affiliation(s)
- Vismitha Rajeev
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Nishat I. Tabassum
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
| | - David Y. Fann
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Christopher P. Chen
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Mitchell K.P. Lai
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Memory Aging and Cognition Centre, National University Health System, Singapore
| | - Thiruma V. Arumugam
- Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Australia
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
3
|
de Souza KR, Engel NA, Soares HJ, Bressan CBC, Dela Vedova LM, da Silva LE, Mendes TF, da Silva MR, de Oliveira MP, Goulart AI, Córneo E, de Medeiros Borges H, Michels M, Bittencourt JVS, de Roch Casagrande L, Ferreira GK, Petronilho FC, Dal-Pizzol F, Silveira PCL, de Bitencourt RM, da Silva MG, Rezin GT. Nutritional strategies cause memory damage and alter biochemical parameters without causing neuroinflammation. Metab Brain Dis 2024; 39:635-648. [PMID: 38429463 DOI: 10.1007/s11011-023-01311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 10/20/2023] [Indexed: 03/03/2024]
Abstract
Obesity results from an energy imbalance and has been considered an epidemic due to its increasing rates worldwide. It is classified as a low-grade chronic inflammatory disease and has associated comorbidities. Different nutritional strategies are used for the purpose of weight loss, highlighting low-carbohydrate (LC) diets, ketogenic diets, and intermittent fasting (IF). These strategies can lead to metabolic and behavioral changes as they stimulate different biochemical pathways. Therefore, this study evaluated memory, energy metabolism, neuroinflammation, oxidative stress, and antioxidant defense parameters in mice subjected to an LC diet, ketogenic diet (KD), or IF. Eighty male Swiss mice, 60 days old, were divided into 4 groups: control, LC, KD, or IF. Body weight was measured weekly, and food intake every 48 h. After 15 days of nutritional interventions, the animals were subjected to the behavioral object recognition test and subsequently euthanized. Then, visceral fat was removed and weighed, and the brain was isolated for inflammatory and biochemical analysis. We concluded from this study that the LC and KD strategies could damage memory, IF improves the production of adenosine triphosphate (ATP), and the LC, KD, and IF strategies do not lead to neuroinflammatory damage but present damage at the level of oxidative stress.
Collapse
Affiliation(s)
- Keila Rufatto de Souza
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Nicole Alessandra Engel
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Hevylin Jacinto Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Catarina Barbosa Chaves Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Larissa Marques Dela Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Larissa Espindola da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Talita Farias Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Mariella Reinol da Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| | - Mariana Pacheco de Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil.
| | - Amanda Indalecio Goulart
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Emily Córneo
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Heloísa de Medeiros Borges
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Monique Michels
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - João Vitor Silvano Bittencourt
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Laura de Roch Casagrande
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | | | - Fabricia Cardoso Petronilho
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Paulo Cesar Lock Silveira
- Laboratory of Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina, Criciúma, Santa Catarina, Brazil
| | - Rafael Mariano de Bitencourt
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Marina Goulart da Silva
- Behavioral Neuroscience Laboratory, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, Santa Catarina, Brazil
| | - Gislaine Tezza Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Av. José Acácio Moreira, 787, Tubarão, Santa Catarina, 88704-900, Brazil
| |
Collapse
|
4
|
Melgar-Locatelli S, de Ceglia M, Mañas-Padilla MC, Rodriguez-Pérez C, Castilla-Ortega E, Castro-Zavala A, Rivera P. Nutrition and adult neurogenesis in the hippocampus: Does what you eat help you remember? Front Neurosci 2023; 17:1147269. [PMID: 36908779 PMCID: PMC9995971 DOI: 10.3389/fnins.2023.1147269] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Neurogenesis is a complex process by which neural progenitor cells (NPCs)/neural stem cells (NSCs) proliferate and differentiate into new neurons and other brain cells. In adulthood, the hippocampus is one of the areas with more neurogenesis activity, which is involved in the modulation of both emotional and cognitive hippocampal functions. This complex process is affected by many intrinsic and extrinsic factors, including nutrition. In this regard, preclinical studies performed in rats and mice demonstrate that high fats and/or sugars diets have a negative effect on adult hippocampal neurogenesis (AHN). In contrast, diets enriched with bioactive compounds, such as polyunsaturated fatty acids and polyphenols, as well as intermittent fasting or caloric restriction, can induce AHN. Interestingly, there is also growing evidence demonstrating that offspring AHN can be affected by maternal nutrition in the perinatal period. Therefore, nutritional interventions from early stages and throughout life are a promising perspective to alleviate neurodegenerative diseases by stimulating neurogenesis. The underlying mechanisms by which nutrients and dietary factors affect AHN are still being studied. Interestingly, recent evidence suggests that additional peripheral mediators may be involved. In this sense, the microbiota-gut-brain axis mediates bidirectional communication between the gut and the brain and could act as a link between nutritional factors and AHN. The aim of this mini-review is to summarize, the most recent findings related to the influence of nutrition and diet in the modulation of AHN. The importance of maternal nutrition in the AHN of the offspring and the role of the microbiota-gut-brain axis in the nutrition-neurogenesis relationship have also been included.
Collapse
Affiliation(s)
- Sonia Melgar-Locatelli
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Marialuisa de Ceglia
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,UGC Salud Mental, Hospital Universitario Regional de Málaga, Málaga, Spain
| | - M Carmen Mañas-Padilla
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Celia Rodriguez-Pérez
- Departamento de Nutrición y Bromatología, Facultad de Ciencias de la Salud, Universidad de Granada, Granada, Spain.,Instituto de Nutrición y Tecnología de los Alimentos 'José Mataix', Universidad de Granada, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.GRANADA, Granada, Spain
| | - Estela Castilla-Ortega
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Adriana Castro-Zavala
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Facultad de Psicología, Universidad de Málaga, Málaga, Spain
| | - Patricia Rivera
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma BIONAND, Málaga, Spain.,UGC Salud Mental, Hospital Universitario Regional de Málaga, Málaga, Spain
| |
Collapse
|
5
|
Increased Calbindin D28k Expression via Long-Term Alternate-Day Fasting Does Not Protect against Ischemia-Reperfusion Injury: A Focus on Delayed Neuronal Death, Gliosis and Immunoglobulin G Leakage. Int J Mol Sci 2021; 22:ijms22020644. [PMID: 33440708 PMCID: PMC7827208 DOI: 10.3390/ijms22020644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/06/2021] [Accepted: 01/06/2021] [Indexed: 01/02/2023] Open
Abstract
Calbindin-D28k (CB), a calcium-binding protein, mediates diverse neuronal functions. In this study, adult gerbils were fed a normal diet (ND) or exposed to intermittent fasting (IF) for three months, and were randomly assigned to sham or ischemia operated groups. Ischemic injury was induced by transient forebrain ischemia for 5 min. Short-term memory was examined via passive avoidance test. CB expression was investigated in the Cornu Ammonis 1 (CA1) region of the hippocampus via western blot analysis and immunohistochemistry. Finally, histological analysis was used to assess neuroprotection and gliosis (microgliosis and astrogliosis) in the CA1 region. Short-term memory did not vary significantly between ischemic gerbils with IF and those exposed to ND. CB expression was increased significantly in the CA1 pyramidal neurons of ischemic gerbils with IF compared with that of gerbils fed ND. However, the CB expression was significantly decreased in ischemic gerbils with IF, similarly to that of ischemic gerbils exposed to ND. The CA1 pyramidal neurons were not protected from ischemic injury in both groups, and gliosis (astrogliosis and microgliosis) was gradually increased with time after ischemia. In addition, immunoglobulin G was leaked into the CA1 parenchyma from blood vessels and gradually increased with time after ischemic insult in both groups. Taken together, our study suggests that IF for three months increases CB expression in hippocampal CA1 pyramidal neurons; however, the CA1 pyramidal neurons are not protected from transient forebrain ischemia. This failure in neuroprotection may be attributed to disruption of the blood–brain barrier, which triggers gliosis after ischemic insults.
Collapse
|
6
|
Energy Restriction Enhances Adult Hippocampal Neurogenesis-Associated Memory after Four Weeks in an Adult Human Population with Central Obesity; a Randomized Controlled Trial. Nutrients 2020; 12:nu12030638. [PMID: 32121111 PMCID: PMC7146388 DOI: 10.3390/nu12030638] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 01/13/2023] Open
Abstract
Adult neurogenesis, the generation of new neurons throughout life, occurs in the subventricular zone of the dentate gyrus in the human hippocampal formation. It has been shown in rodents that adult hippocampal neurogenesis is needed for pattern separation, the ability to differentially encode small changes derived from similar inputs, and recognition memory, as well as the ability to recognize previously encountered stimuli. Improved hippocampus-dependent cognition and cellular readouts of adult hippocampal neurogenesis have been reported in daily energy restricted and intermittent fasting adult mice. Evidence that nutrition can significantly affect brain structure and function is increasing substantially. This randomized intervention study investigated the effects of intermittent and continuous energy restriction on human hippocampal neurogenesis-related cognition, which has not been reported previously. Pattern separation and recognition memory were measured in 43 individuals with central obesity aged 35-75 years, before and after a four-week dietary intervention using the mnemonic similarity task. Both groups significantly improved pattern separation (P = 0.0005), but only the intermittent energy restriction group had a significant deterioration in recognition memory. There were no significant differences in cognitive improvement between the two diets. This is the first human study to investigate the association between energy restriction with neurogenesis-associated cognitive function. Energy restriction may enhance hippocampus-dependent memory and could benefit those in an ageing population with declining cognition. This study was registered on ClinicalTrials.gov (NCT02679989) on 11 February 2016.
Collapse
|
7
|
Park JH, Kim DW, Lee TK, Park CW, Park YE, Ahn JH, Lee HA, Won MH, Lee CH. Improved HCN channels in pyramidal neurons and their new expression levels in pericytes and astrocytes in the gerbil hippocampal CA1 subfield following transient ischemia. Int J Mol Med 2019; 44:1801-1810. [PMID: 31573045 PMCID: PMC6777693 DOI: 10.3892/ijmm.2019.4353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 09/04/2019] [Indexed: 11/30/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels have been known to participate in the regulation of neuronal excitability, synaptic transmission and long-term potentiation in the hippocampus. The present study investigated transient ischemia-induced changes of HCN1 and HCN2 expressions in the Cornu Ammonis 1 (CA1) subfield of the hippocampus in gerbils subjected to 5 min transient global cerebral ischemia (tgCI). Neuronal death was exhibited in pyramidal neurons of the striatum pyramidale in the CA1 subfield 4 days after tgCI. HCN1 and HCN2 immunoreactivities were demonstrated in intact CA1 pyramidal neurons, and were transiently and markedly increased in the CA pyramidal neurons at 6 h after ischemia. Thereafter, they gradually decreased in a time-dependent manner. A total of 4 days after ischemia, HCN1 and HCN2 immunoreactivities were barely detected in the CA1 pyramidal neurons; however, HCN1 and HCN2 were began to be expressed in pericytes and astrocytes at 4 days after ischemia. The results indicated that HCN1 and HCN2 expression levels were apparently changed in the gerbil hippocampal CA1 subfield following tgCI and suggested that ischemia-induced alterations in HCN1 and HCN2 expression levels may be closely associated with the death of CA1 pyramidal neurons following 5 min of tgCI.
Collapse
Affiliation(s)
- Joon Ha Park
- Department of Anatomy, College of Korean Medicine, Dongguk University, Gyeongju, Gyeongbuk 38066, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Tae-Kyeong Lee
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Cheol Woo Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Young Eun Park
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Ji Hyeon Ahn
- Department of Biomedical Science, Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Hyang-Ah Lee
- Department of Obstetrics and Gynecology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Choong-Hyun Lee
- Department of Pharmacy, College of Pharmacy, Dankook University, Cheonan, Chungcheongnam 31116, Republic of Korea
| |
Collapse
|